|
import numpy as np |
|
from scipy.sparse import csr_matrix |
|
|
|
""" |
|
Function to find similar project for the single project matching |
|
|
|
Single Project Matching empowers you to choose an individual project using |
|
either the project IATI ID or title, and then unveils the top x projects within a filter (filtered_df) that |
|
bear the closest resemblance to your selected one (p_index). |
|
""" |
|
|
|
def find_similar(p_index, similarity_matrix, filtered_df, top_x): |
|
""" |
|
p_index: index of selected project |
|
similarity_matrix: matrix with similarities of all projects |
|
filtered_df: df with filter applied |
|
top_x: top x project which should be displayed |
|
""" |
|
|
|
|
|
if not isinstance(similarity_matrix, csr_matrix): |
|
similarity_matrix = csr_matrix(similarity_matrix) |
|
|
|
|
|
filtered_indices = filtered_df.index.tolist() |
|
filtered_column_sim_matrix = similarity_matrix[:, filtered_indices] |
|
|
|
|
|
index_position_mapping = {position: index for position, index in enumerate(filtered_indices)} |
|
|
|
|
|
project_row = filtered_column_sim_matrix.getrow(p_index).toarray().ravel() |
|
|
|
|
|
sorted_indices = np.argsort(project_row)[-top_x:][::-1] |
|
top_indices = [index_position_mapping[i] for i in sorted_indices] |
|
top_values = project_row[sorted_indices] |
|
|
|
|
|
result_df = filtered_df.loc[top_indices] |
|
result_df['similarity'] = top_values |
|
|
|
return result_df |
|
|