Jan Mühlnikel commited on
Commit
0ef6d21
·
1 Parent(s): 7d8805d

experiment

Browse files
functions/{single_similar.py → single_project_matching.py} RENAMED
@@ -1,54 +1,42 @@
1
- import pandas as pd
2
  import numpy as np
3
  from scipy.sparse import csr_matrix
4
 
5
  """
6
- def find_similar(p_index, similarity_matrix, filtered_df, top_x):
7
-
8
- # filter out just projects from filtered df
9
- filtered_indices = filtered_df.index.tolist()
10
-
11
- index_position_mapping = {position: index for position, index in enumerate(filtered_indices)}
12
-
13
- filtered_column_sim_matrix = similarity_matrix[:, filtered_indices]
14
 
15
- # filter out the row of the selected poject
16
- project_row = filtered_column_sim_matrix[p_index]
17
- sorted_indices = np.argsort(project_row)
18
- top_10_indices_descending = sorted_indices[-10:][::-1]
19
- #top_10_original_indices = [index_position_mapping[position] for position in top_10_indices_descending]
20
- top_10_values_descending = project_row[top_10_indices_descending]
21
-
22
- result_df = filtered_df.iloc[top_10_indices_descending]
23
- result_df["similarity"] = top_10_values_descending
24
-
25
- return result_df
26
  """
27
 
28
  def find_similar(p_index, similarity_matrix, filtered_df, top_x):
29
- # Ensure the similarity_matrix is in a suitable sparse format like CSR
 
 
 
 
 
 
 
30
  if not isinstance(similarity_matrix, csr_matrix):
31
  similarity_matrix = csr_matrix(similarity_matrix)
32
 
33
- # Filter out just projects from filtered_df
34
- filtered_indices = filtered_df.index.tolist()
 
35
 
36
- # Create a mapping from new position to original indices
37
  index_position_mapping = {position: index for position, index in enumerate(filtered_indices)}
38
 
39
- # Extract the submatrix corresponding to the filtered indices
40
- filtered_column_sim_matrix = similarity_matrix[:, filtered_indices]
41
-
42
- # Extract the row for the selected project efficiently
43
- # Convert the sparse row slice to a dense array for argsort function
44
  project_row = filtered_column_sim_matrix.getrow(p_index).toarray().ravel()
45
 
46
- # Find top_x indices with the highest similarity scores
47
  sorted_indices = np.argsort(project_row)[-top_x:][::-1]
48
  top_indices = [index_position_mapping[i] for i in sorted_indices]
49
  top_values = project_row[sorted_indices]
50
 
51
- # Prepare the result DataFrame
52
  result_df = filtered_df.loc[top_indices]
53
  result_df['similarity'] = top_values
54
 
 
 
1
  import numpy as np
2
  from scipy.sparse import csr_matrix
3
 
4
  """
5
+ Function to find similar project for the single project matching
 
 
 
 
 
 
 
6
 
7
+ Single Project Matching empowers you to choose an individual project using
8
+ either the project IATI ID or title, and then unveils the top x projects within a filter (filtered_df) that
9
+ bear the closest resemblance to your selected one (p_index).
 
 
 
 
 
 
 
 
10
  """
11
 
12
  def find_similar(p_index, similarity_matrix, filtered_df, top_x):
13
+ """
14
+ p_index: index of selected project
15
+ similarity_matrix: matrix with similarities of all projects
16
+ filtered_df: df with filter applied
17
+ top_x: top x project which should be displayed
18
+ """
19
+
20
+ # convert npz sparse matrix into csr matrix
21
  if not isinstance(similarity_matrix, csr_matrix):
22
  similarity_matrix = csr_matrix(similarity_matrix)
23
 
24
+ # filter out just projects from filtered_df
25
+ filtered_indices = filtered_df.index.tolist()
26
+ filtered_column_sim_matrix = similarity_matrix[:, filtered_indices]
27
 
28
+ # create a mapping from new position to original indices
29
  index_position_mapping = {position: index for position, index in enumerate(filtered_indices)}
30
 
31
+ # select just the row of th similarity matrix of the selected project index
 
 
 
 
32
  project_row = filtered_column_sim_matrix.getrow(p_index).toarray().ravel()
33
 
34
+ # find top_x indices with the highest similarity scores in the row
35
  sorted_indices = np.argsort(project_row)[-top_x:][::-1]
36
  top_indices = [index_position_mapping[i] for i in sorted_indices]
37
  top_values = project_row[sorted_indices]
38
 
39
+ # create result df with all top_x similar projects
40
  result_df = filtered_df.loc[top_indices]
41
  result_df['similarity'] = top_values
42
 
similarity_page.py CHANGED
@@ -16,7 +16,7 @@ from functions.filter_projects import filter_projects
16
  from functions.filter_single import filter_single
17
  from functions.multi_project_matching import calc_multi_matches
18
  from functions.same_country_filter import same_country_filter
19
- from functions.single_similar import find_similar
20
  #import psutil
21
  import os
22
  import gc
 
16
  from functions.filter_single import filter_single
17
  from functions.multi_project_matching import calc_multi_matches
18
  from functions.same_country_filter import same_country_filter
19
+ from functions.single_project_matching import find_similar
20
  #import psutil
21
  import os
22
  import gc