Spaces:
GIZ
/
Running on CPU Upgrade

File size: 8,800 Bytes
773f59c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc44d48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
773f59c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc44d48
 
773f59c
cc44d48
 
 
 
 
773f59c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc44d48
773f59c
 
 
 
cc44d48
773f59c
cc44d48
 
773f59c
 
 
 
 
 
 
 
 
cc44d48
773f59c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc44d48
773f59c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc44d48
773f59c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc44d48
773f59c
 
 
 
 
 
 
 
 
 
 
 
 
 
cc44d48
773f59c
 
 
 
 
 
 
cc44d48
773f59c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import logging
import asyncio
import json
import ast
from typing import List, Dict, Any, Union
from dotenv import load_dotenv

# LangChain imports
from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic
from langchain_cohere import ChatCohere
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_core.messages import SystemMessage, HumanMessage

import os
import configparser


def getconfig(configfile_path: str):
    """
    Read the config file
    Params
    ----------------
    configfile_path: file path of .cfg file
    """
    config = configparser.ConfigParser()
    try:
        config.read_file(open(configfile_path))
        return config
    except:
        logging.warning("config file not found")

# ---------------------------------------------------------------------
# Provider-agnostic authentication and configuration
# ---------------------------------------------------------------------

def get_auth(provider: str) -> dict:
    """Get authentication configuration for different providers"""
    auth_configs = {
        "openai": {"api_key": os.getenv("OPENAI_API_KEY")},
        "huggingface": {"api_key": os.getenv("HF_TOKEN")},
        "anthropic": {"api_key": os.getenv("ANTHROPIC_API_KEY")},
        "cohere": {"api_key": os.getenv("COHERE_API_KEY")},
    }
    
    if provider not in auth_configs:
        raise ValueError(f"Unsupported provider: {provider}")
    
    auth_config = auth_configs[provider]
    api_key = auth_config.get("api_key")
    
    if not api_key:
        raise RuntimeError(f"Missing API key for provider '{provider}'. Please set the appropriate environment variable.")
    
    return auth_config

# ---------------------------------------------------------------------
# Model / client initialization (non exaustive list of providers)
# ---------------------------------------------------------------------

config = getconfig("model_params.cfg")

PROVIDER = config.get("generator", "PROVIDER")
MODEL = config.get("generator", "MODEL")
MAX_TOKENS = int(config.get("generator", "MAX_TOKENS"))
TEMPERATURE = float(config.get("generator", "TEMPERATURE"))

# Set up authentication for the selected provider
auth_config = get_auth(PROVIDER)

def get_chat_model():
    """Initialize the appropriate LangChain chat model based on provider"""
    common_params = {
        "temperature": TEMPERATURE,
        "max_tokens": MAX_TOKENS,
    }
    logging.info(f"provider is {PROVIDER}")
    
    if PROVIDER == "openai":
        return ChatOpenAI(
            model=MODEL,
            openai_api_key=auth_config["api_key"],
            **common_params
        )
    elif PROVIDER == "anthropic":
        return ChatAnthropic(
            model=MODEL,
            anthropic_api_key=auth_config["api_key"],
            **common_params
        )
    elif PROVIDER == "cohere":
        return ChatCohere(
            model=MODEL,
            cohere_api_key=auth_config["api_key"],
            **common_params
        )
    elif PROVIDER == "huggingface":
        # Initialize HuggingFaceEndpoint with explicit parameters
        llm = HuggingFaceEndpoint(
            repo_id=MODEL,
            huggingfacehub_api_token=auth_config["api_key"],
            task="text-generation",
            temperature=TEMPERATURE,
            max_new_tokens=MAX_TOKENS
        )
        return ChatHuggingFace(llm=llm)
    else:
        raise ValueError(f"Unsupported provider: {PROVIDER}")

# Initialize provider-agnostic chat model
chat_model = get_chat_model()

# ---------------------------------------------------------------------
# Context processing - may need further refinement (i.e. to manage other data sources)
# ---------------------------------------------------------------------
def extract_relevant_fields(retrieval_results: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
    """
    Extract only relevant fields from retrieval results.
    
    Args:
        retrieval_results: List of JSON objects from retriever
        
    Returns:
        List of processed objects with only relevant fields
    """

    retrieval_results = ast.literal_eval(retrieval_results)

    processed_results = []
    
    for result in retrieval_results:
        # Extract the answer content
        answer = result.get('answer', '')
        
        # Extract document identification from metadata
        metadata = result.get('answer_metadata', {})
        doc_info = {
            'answer': answer,
            'filename': metadata.get('filename', 'Unknown'),
            'page': metadata.get('page', 'Unknown'),
            'year': metadata.get('year', 'Unknown'),
            'source': metadata.get('source', 'Unknown'),
            'document_id': metadata.get('_id', 'Unknown')
        }
        
        processed_results.append(doc_info)
    
    return processed_results

def format_context_from_results(processed_results: List[Dict[str, Any]]) -> str:
    """
    Format processed retrieval results into a context string for the LLM.
    
    Args:
        processed_results: List of processed objects with relevant fields
        
    Returns:
        Formatted context string
    """
    if not processed_results:
        return ""
    
    context_parts = []
    
    for i, result in enumerate(processed_results, 1):
        doc_reference = f"[Document {i}: {result['filename']}"
        if result['page'] != 'Unknown':
            doc_reference += f", Page {result['page']}"
        if result['year'] != 'Unknown':
            doc_reference += f", Year {result['year']}"
        doc_reference += "]"
        
        context_part = f"{doc_reference}\n{result['answer']}\n"
        context_parts.append(context_part)
    
    return "\n".join(context_parts)

# ---------------------------------------------------------------------
# Core generation function for both Gradio UI and MCP
# ---------------------------------------------------------------------
async def _call_llm(messages: list) -> str:
    """
    Provider-agnostic LLM call using LangChain.
    
    Args:
        messages: List of LangChain message objects
        
    Returns:
        Generated response content as string
    """
    try:
        # Use async invoke for better performance
        response = await chat_model.ainvoke(messages)
        return response.content.strip()
    except Exception as e:
        logging.exception(f"LLM generation failed with provider '{PROVIDER}' and model '{MODEL}': {e}")
        raise

def build_messages(question: str, context: str) -> list:
    """
    Build messages in LangChain format.
    
    Args:
        question: The user's question
        context: The relevant context for answering
        
    Returns:
        List of LangChain message objects
    """
    system_content = (
        "You are an expert assistant. Answer the USER question using only the "
        "CONTEXT provided. If the context is insufficient say 'I don't know.'"
    )
    
    user_content = f"### CONTEXT\n{context}\n\n### USER QUESTION\n{question}"
    
    return [
        SystemMessage(content=system_content),
        HumanMessage(content=user_content)
    ]

    
async def generate(query: str, context: Union[str, List[Dict[str, Any]]]) -> str:
    """
    Generate an answer to a query using provided context through RAG.
    
    This function takes a user query and relevant context, then uses a language model
    to generate a comprehensive answer based on the provided information.
    
    Args:
        query (str): User query
        context (list): List of retrieval result objects (dictionaries)
    Returns:
        str: The generated answer based on the query and context
    """
    if not query.strip():
        return "Error: Query cannot be empty"
    
    # Handle both string context (for Gradio UI) and list context (from retriever)
    if isinstance(context, list):
        if not context:
            return "Error: No retrieval results provided"
        
        # Process the retrieval results
        processed_results = extract_relevant_fields(context)
        formatted_context = format_context_from_results(processed_results)
        
        if not formatted_context.strip():
            return "Error: No valid content found in retrieval results"
    
    elif isinstance(context, str):
        if not context.strip():
            return "Error: Context cannot be empty"
        formatted_context = context
    
    else:
        return "Error: Context must be either a string or list of retrieval results"
    
    try:
        messages = build_messages(query, formatted_context)
        answer = await _call_llm(messages)
        return answer
    except Exception as e:
        logging.exception("Generation failed")
        return f"Error: {str(e)}"