Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
add generator
Browse files- app.py +1 -1
- model_params.cfg +1 -9
- utils/generator.py +231 -22
app.py
CHANGED
@@ -199,7 +199,7 @@ def retrieve_paragraphs(query):
|
|
199 |
"""Connect to retriever and retrieve paragraphs"""
|
200 |
try:
|
201 |
# Call the API with the uploaded file
|
202 |
-
client = Client("https://giz-
|
203 |
result = client.predict(
|
204 |
query=query,
|
205 |
reports_filter="",
|
|
|
199 |
"""Connect to retriever and retrieve paragraphs"""
|
200 |
try:
|
201 |
# Call the API with the uploaded file
|
202 |
+
client = Client("https://giz-eudr-retriever.hf.space/")
|
203 |
result = client.predict(
|
204 |
query=query,
|
205 |
reports_filter="",
|
model_params.cfg
CHANGED
@@ -1,12 +1,3 @@
|
|
1 |
-
[retriever]
|
2 |
-
MODEL = BAAI/bge-m3
|
3 |
-
NORMALIZE = 1
|
4 |
-
TOP_K = 20
|
5 |
-
|
6 |
-
[ranker]
|
7 |
-
MODEL = BAAI/bge-reranker-v2-m3
|
8 |
-
TOP_K = 5
|
9 |
-
|
10 |
[generator]
|
11 |
PROVIDER = huggingface
|
12 |
MODEL = meta-llama/Meta-Llama-3-8B-Instruct
|
@@ -22,5 +13,6 @@ NVIDIA_MODEL = meta-llama/Llama-3.1-8B-Instruct
|
|
22 |
NVIDIA_ENDPOINT = https://huggingface.co/api/integrations/dgx/v1
|
23 |
MAX_TOKENS = 768
|
24 |
INF_PROVIDER = nebius
|
|
|
25 |
[app]
|
26 |
dropdown_default = Annual Consolidated OAG 2024
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
[generator]
|
2 |
PROVIDER = huggingface
|
3 |
MODEL = meta-llama/Meta-Llama-3-8B-Instruct
|
|
|
13 |
NVIDIA_ENDPOINT = https://huggingface.co/api/integrations/dgx/v1
|
14 |
MAX_TOKENS = 768
|
15 |
INF_PROVIDER = nebius
|
16 |
+
|
17 |
[app]
|
18 |
dropdown_default = Annual Consolidated OAG 2024
|
utils/generator.py
CHANGED
@@ -1,3 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import configparser
|
2 |
|
3 |
|
@@ -15,42 +30,236 @@ def getconfig(configfile_path: str):
|
|
15 |
except:
|
16 |
logging.warning("config file not found")
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
config = getconfig("model_params.cfg")
|
|
|
20 |
PROVIDER = config.get("generator", "PROVIDER")
|
21 |
MODEL = config.get("generator", "MODEL")
|
22 |
MAX_TOKENS = int(config.get("generator", "MAX_TOKENS"))
|
23 |
TEMPERATURE = float(config.get("generator", "TEMPERATURE"))
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
|
|
|
|
|
|
27 |
"""
|
28 |
-
|
29 |
-
using the retrieved document chunks and a model.
|
30 |
|
31 |
Args:
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import asyncio
|
3 |
+
import json
|
4 |
+
import ast
|
5 |
+
from typing import List, Dict, Any, Union
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
|
8 |
+
# LangChain imports
|
9 |
+
from langchain_openai import ChatOpenAI
|
10 |
+
from langchain_anthropic import ChatAnthropic
|
11 |
+
from langchain_cohere import ChatCohere
|
12 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
13 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
14 |
+
|
15 |
+
import os
|
16 |
import configparser
|
17 |
|
18 |
|
|
|
30 |
except:
|
31 |
logging.warning("config file not found")
|
32 |
|
33 |
+
# ---------------------------------------------------------------------
|
34 |
+
# Provider-agnostic authentication and configuration
|
35 |
+
# ---------------------------------------------------------------------
|
36 |
+
|
37 |
+
def get_auth(provider: str) -> dict:
|
38 |
+
"""Get authentication configuration for different providers"""
|
39 |
+
auth_configs = {
|
40 |
+
"openai": {"api_key": os.getenv("OPENAI_API_KEY")},
|
41 |
+
"huggingface": {"api_key": os.getenv("HF_TOKEN")},
|
42 |
+
"anthropic": {"api_key": os.getenv("ANTHROPIC_API_KEY")},
|
43 |
+
"cohere": {"api_key": os.getenv("COHERE_API_KEY")},
|
44 |
+
}
|
45 |
+
|
46 |
+
if provider not in auth_configs:
|
47 |
+
raise ValueError(f"Unsupported provider: {provider}")
|
48 |
+
|
49 |
+
auth_config = auth_configs[provider]
|
50 |
+
api_key = auth_config.get("api_key")
|
51 |
+
|
52 |
+
if not api_key:
|
53 |
+
raise RuntimeError(f"Missing API key for provider '{provider}'. Please set the appropriate environment variable.")
|
54 |
+
|
55 |
+
return auth_config
|
56 |
+
|
57 |
+
# ---------------------------------------------------------------------
|
58 |
+
# Model / client initialization (non exaustive list of providers)
|
59 |
+
# ---------------------------------------------------------------------
|
60 |
|
61 |
config = getconfig("model_params.cfg")
|
62 |
+
|
63 |
PROVIDER = config.get("generator", "PROVIDER")
|
64 |
MODEL = config.get("generator", "MODEL")
|
65 |
MAX_TOKENS = int(config.get("generator", "MAX_TOKENS"))
|
66 |
TEMPERATURE = float(config.get("generator", "TEMPERATURE"))
|
67 |
|
68 |
+
# Set up authentication for the selected provider
|
69 |
+
auth_config = get_auth(PROVIDER)
|
70 |
+
|
71 |
+
def get_chat_model():
|
72 |
+
"""Initialize the appropriate LangChain chat model based on provider"""
|
73 |
+
common_params = {
|
74 |
+
"temperature": TEMPERATURE,
|
75 |
+
"max_tokens": MAX_TOKENS,
|
76 |
+
}
|
77 |
+
logging.info(f"provider is {PROVIDER}")
|
78 |
+
|
79 |
+
if PROVIDER == "openai":
|
80 |
+
return ChatOpenAI(
|
81 |
+
model=MODEL,
|
82 |
+
openai_api_key=auth_config["api_key"],
|
83 |
+
**common_params
|
84 |
+
)
|
85 |
+
elif PROVIDER == "anthropic":
|
86 |
+
return ChatAnthropic(
|
87 |
+
model=MODEL,
|
88 |
+
anthropic_api_key=auth_config["api_key"],
|
89 |
+
**common_params
|
90 |
+
)
|
91 |
+
elif PROVIDER == "cohere":
|
92 |
+
return ChatCohere(
|
93 |
+
model=MODEL,
|
94 |
+
cohere_api_key=auth_config["api_key"],
|
95 |
+
**common_params
|
96 |
+
)
|
97 |
+
elif PROVIDER == "huggingface":
|
98 |
+
# Initialize HuggingFaceEndpoint with explicit parameters
|
99 |
+
llm = HuggingFaceEndpoint(
|
100 |
+
repo_id=MODEL,
|
101 |
+
huggingfacehub_api_token=auth_config["api_key"],
|
102 |
+
task="text-generation",
|
103 |
+
temperature=TEMPERATURE,
|
104 |
+
max_new_tokens=MAX_TOKENS
|
105 |
+
)
|
106 |
+
return ChatHuggingFace(llm=llm)
|
107 |
+
else:
|
108 |
+
raise ValueError(f"Unsupported provider: {PROVIDER}")
|
109 |
+
|
110 |
+
# Initialize provider-agnostic chat model
|
111 |
+
chat_model = get_chat_model()
|
112 |
|
113 |
+
# ---------------------------------------------------------------------
|
114 |
+
# Context processing - may need further refinement (i.e. to manage other data sources)
|
115 |
+
# ---------------------------------------------------------------------
|
116 |
+
def extract_relevant_fields(retrieval_results: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
117 |
"""
|
118 |
+
Extract only relevant fields from retrieval results.
|
|
|
119 |
|
120 |
Args:
|
121 |
+
retrieval_results: List of JSON objects from retriever
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
List of processed objects with only relevant fields
|
125 |
+
"""
|
126 |
+
|
127 |
+
retrieval_results = ast.literal_eval(retrieval_results)
|
128 |
+
|
129 |
+
processed_results = []
|
130 |
|
131 |
+
for result in retrieval_results:
|
132 |
+
# Extract the answer content
|
133 |
+
answer = result.get('answer', '')
|
134 |
+
|
135 |
+
# Extract document identification from metadata
|
136 |
+
metadata = result.get('answer_metadata', {})
|
137 |
+
doc_info = {
|
138 |
+
'answer': answer,
|
139 |
+
'filename': metadata.get('filename', 'Unknown'),
|
140 |
+
'page': metadata.get('page', 'Unknown'),
|
141 |
+
'year': metadata.get('year', 'Unknown'),
|
142 |
+
'source': metadata.get('source', 'Unknown'),
|
143 |
+
'document_id': metadata.get('_id', 'Unknown')
|
144 |
+
}
|
145 |
+
|
146 |
+
processed_results.append(doc_info)
|
147 |
+
|
148 |
+
return processed_results
|
149 |
+
|
150 |
+
def format_context_from_results(processed_results: List[Dict[str, Any]]) -> str:
|
151 |
"""
|
152 |
+
Format processed retrieval results into a context string for the LLM.
|
153 |
+
|
154 |
+
Args:
|
155 |
+
processed_results: List of processed objects with relevant fields
|
156 |
+
|
157 |
+
Returns:
|
158 |
+
Formatted context string
|
159 |
+
"""
|
160 |
+
if not processed_results:
|
161 |
+
return ""
|
162 |
+
|
163 |
+
context_parts = []
|
164 |
+
|
165 |
+
for i, result in enumerate(processed_results, 1):
|
166 |
+
doc_reference = f"[Document {i}: {result['filename']}"
|
167 |
+
if result['page'] != 'Unknown':
|
168 |
+
doc_reference += f", Page {result['page']}"
|
169 |
+
if result['year'] != 'Unknown':
|
170 |
+
doc_reference += f", Year {result['year']}"
|
171 |
+
doc_reference += "]"
|
172 |
+
|
173 |
+
context_part = f"{doc_reference}\n{result['answer']}\n"
|
174 |
+
context_parts.append(context_part)
|
175 |
+
|
176 |
+
return "\n".join(context_parts)
|
177 |
|
178 |
+
# ---------------------------------------------------------------------
|
179 |
+
# Core generation function for both Gradio UI and MCP
|
180 |
+
# ---------------------------------------------------------------------
|
181 |
+
async def _call_llm(messages: list) -> str:
|
182 |
+
"""
|
183 |
+
Provider-agnostic LLM call using LangChain.
|
184 |
+
|
185 |
+
Args:
|
186 |
+
messages: List of LangChain message objects
|
187 |
+
|
188 |
+
Returns:
|
189 |
+
Generated response content as string
|
190 |
+
"""
|
191 |
+
try:
|
192 |
+
# Use async invoke for better performance
|
193 |
+
response = await chat_model.ainvoke(messages)
|
194 |
+
return response.content.strip()
|
195 |
+
except Exception as e:
|
196 |
+
logging.exception(f"LLM generation failed with provider '{PROVIDER}' and model '{MODEL}': {e}")
|
197 |
+
raise
|
198 |
|
199 |
+
def build_messages(question: str, context: str) -> list:
|
200 |
+
"""
|
201 |
+
Build messages in LangChain format.
|
202 |
+
|
203 |
+
Args:
|
204 |
+
question: The user's question
|
205 |
+
context: The relevant context for answering
|
206 |
+
|
207 |
+
Returns:
|
208 |
+
List of LangChain message objects
|
209 |
+
"""
|
210 |
+
system_content = (
|
211 |
+
"You are an expert assistant. Answer the USER question using only the "
|
212 |
+
"CONTEXT provided. If the context is insufficient say 'I don't know.'"
|
213 |
)
|
214 |
+
|
215 |
+
user_content = f"### CONTEXT\n{context}\n\n### USER QUESTION\n{question}"
|
216 |
+
|
217 |
+
return [
|
218 |
+
SystemMessage(content=system_content),
|
219 |
+
HumanMessage(content=user_content)
|
220 |
+
]
|
221 |
|
222 |
+
|
223 |
+
async def generate(query: str, context: Union[str, List[Dict[str, Any]]]) -> str:
|
224 |
+
"""
|
225 |
+
Generate an answer to a query using provided context through RAG.
|
226 |
+
|
227 |
+
This function takes a user query and relevant context, then uses a language model
|
228 |
+
to generate a comprehensive answer based on the provided information.
|
229 |
+
|
230 |
+
Args:
|
231 |
+
query (str): User query
|
232 |
+
context (list): List of retrieval result objects (dictionaries)
|
233 |
+
Returns:
|
234 |
+
str: The generated answer based on the query and context
|
235 |
+
"""
|
236 |
+
if not query.strip():
|
237 |
+
return "Error: Query cannot be empty"
|
238 |
+
|
239 |
+
# Handle both string context (for Gradio UI) and list context (from retriever)
|
240 |
+
if isinstance(context, list):
|
241 |
+
if not context:
|
242 |
+
return "Error: No retrieval results provided"
|
243 |
+
|
244 |
+
# Process the retrieval results
|
245 |
+
processed_results = extract_relevant_fields(context)
|
246 |
+
formatted_context = format_context_from_results(processed_results)
|
247 |
+
|
248 |
+
if not formatted_context.strip():
|
249 |
+
return "Error: No valid content found in retrieval results"
|
250 |
+
|
251 |
+
elif isinstance(context, str):
|
252 |
+
if not context.strip():
|
253 |
+
return "Error: Context cannot be empty"
|
254 |
+
formatted_context = context
|
255 |
+
|
256 |
+
else:
|
257 |
+
return "Error: Context must be either a string or list of retrieval results"
|
258 |
+
|
259 |
+
try:
|
260 |
+
messages = build_messages(query, formatted_context)
|
261 |
+
answer = await _call_llm(messages)
|
262 |
+
return answer
|
263 |
+
except Exception as e:
|
264 |
+
logging.exception("Generation failed")
|
265 |
+
return f"Error: {str(e)}"
|