Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2024 Alibaba Inc | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import numpy as np | |
import threading | |
import time | |
from contextlib import nullcontext | |
import uuid | |
from inspiremusic.music_tokenizer.vqvae import VQVAE | |
from inspiremusic.wavtokenizer.decoder.pretrained import WavTokenizer | |
from torch.cuda.amp import autocast | |
import logging | |
import torch | |
import os | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
class InspireMusicModel: | |
def __init__(self, | |
llm: torch.nn.Module, | |
flow: torch.nn.Module, | |
music_tokenizer: torch.nn.Module, | |
wavtokenizer: torch.nn.Module, | |
fast: bool = False, | |
fp16: bool = True, | |
): | |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
self.llm = llm | |
self.flow = flow | |
self.music_tokenizer = music_tokenizer | |
self.wavtokenizer = wavtokenizer | |
self.fp16 = fp16 | |
self.token_min_hop_len = 100 | |
self.token_max_hop_len = 200 | |
self.token_overlap_len = 20 | |
# mel fade in out | |
self.mel_overlap_len = 34 | |
self.mel_window = np.hamming(2 * self.mel_overlap_len) | |
# hift cache | |
self.mel_cache_len = 20 | |
self.source_cache_len = int(self.mel_cache_len * 256) | |
# rtf and decoding related | |
self.stream_scale_factor = 1 | |
assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf' | |
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext() | |
self.lock = threading.Lock() | |
# dict used to store session related variable | |
self.music_token_dict = {} | |
self.llm_end_dict = {} | |
self.mel_overlap_dict = {} | |
self.fast = fast | |
self.generator = "hifi" | |
def load(self, llm_model, flow_model, hift_model, wavtokenizer_model): | |
if llm_model is not None: | |
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device)) | |
self.llm.to(self.device).eval() | |
else: | |
self.llm = None | |
if flow_model is not None: | |
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device)) | |
self.flow.to(self.device).eval() | |
if hift_model is not None: | |
if ".pt" not in hift_model: | |
self.music_tokenizer = VQVAE( hift_model + '/config.json', | |
hift_model + '/model.pt', with_encoder=True) | |
else: | |
self.music_tokenizer = VQVAE(os.path.dirname(hift_model) + '/config.json', | |
hift_model, with_encoder=True) | |
self.music_tokenizer.to(self.device).eval() | |
if wavtokenizer_model is not None: | |
if ".pt" not in wavtokenizer_model: | |
self.wavtokenizer = WavTokenizer.from_pretrained_feat( wavtokenizer_model + '/config.yaml', | |
wavtokenizer_model + '/model.pt') | |
else: | |
self.wavtokenizer = WavTokenizer.from_pretrained_feat( os.path.dirname(wavtokenizer_model) + '/config.yaml', | |
wavtokenizer_model ) | |
self.wavtokenizer.to(self.device) | |
def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model): | |
assert self.fp16 is True, "we only provide fp16 jit model, set fp16=True if you want to use jit model" | |
llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device) | |
self.llm.text_encoder = llm_text_encoder | |
llm_llm = torch.jit.load(llm_llm_model) | |
self.llm.llm = llm_llm | |
flow_encoder = torch.jit.load(flow_encoder_model) | |
self.flow.encoder = flow_encoder | |
def load_onnx(self, flow_decoder_estimator_model): | |
import onnxruntime | |
option = onnxruntime.SessionOptions() | |
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL | |
option.intra_op_num_threads = 1 | |
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider'] | |
del self.flow.decoder.estimator | |
self.flow.decoder.estimator = onnxruntime.InferenceSession(flow_decoder_estimator_model, sess_options=option, providers=providers) | |
def llm_job(self, text, audio_token, audio_token_len, prompt_text, llm_prompt_audio_token, embeddings, uuid, duration_to_gen, task): | |
with self.llm_context: | |
local_res = [] | |
with autocast(enabled=self.fp16): | |
inference_kwargs = { | |
'text': text.to(self.device), | |
'text_len': torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device), | |
'prompt_text': prompt_text.to(self.device), | |
'prompt_text_len': torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device), | |
'prompt_audio_token': llm_prompt_audio_token.to(self.device), | |
'prompt_audio_token_len': torch.tensor([llm_prompt_audio_token.shape[1]], dtype=torch.int32).to(self.device), | |
'embeddings': embeddings, | |
'duration_to_gen': duration_to_gen, | |
'task': task | |
} | |
if audio_token is not None: | |
inference_kwargs['audio_token'] = audio_token.to(self.device) | |
else: | |
inference_kwargs['audio_token'] = torch.Tensor([0]).to(self.device) | |
if audio_token_len is not None: | |
inference_kwargs['audio_token_len'] = audio_token_len.to(self.device) | |
else: | |
inference_kwargs['audio_token_len'] = torch.Tensor([0]).to(self.device) | |
for i in self.llm.inference(**inference_kwargs): | |
local_res.append(i) | |
self.music_token_dict[uuid] = local_res | |
self.llm_end_dict[uuid] = True | |
# def token2wav(self, token, token_len, text, text_len, uuid, sample_rate, finalize=False): | |
def token2wav(self, token, token_len, uuid, sample_rate, finalize=False, flow_cfg=None): | |
# if self.flow is not None: | |
# if isinstance(self.flow,MaskedDiffWithText): | |
# codec_embed = self.flow.inference(token=token.to(self.device), | |
# token_len=token_len.to(self.device), | |
# text_token=text, | |
# text_token_len=text_len, | |
# ) | |
# else: | |
if flow_cfg is not None: | |
codec_embed = self.flow.inference_cfg(token=token.to(self.device), | |
token_len=token_len.to(self.device), | |
sample_rate=sample_rate | |
) | |
else: | |
codec_embed = self.flow.inference(token=token.to(self.device), | |
token_len=token_len.to(self.device), | |
sample_rate=sample_rate | |
) | |
# use music_tokenizer decoder | |
wav = self.music_tokenizer.generator(codec_embed) | |
wav = wav.squeeze(0).cpu().detach() | |
return wav | |
def acoustictoken2wav(self, token): | |
# use music_tokenizer to generate waveform from token | |
token = token.view(token.size(0), -1, 4) | |
# codec = token.view(1, -1, 4) | |
codec_embed = self.music_tokenizer.quantizer.embed(torch.tensor(token).long().to(self.device)).cuda() | |
wav = self.music_tokenizer.generator(codec_embed) | |
wav = wav.squeeze(0).cpu().detach() | |
return wav | |
def semantictoken2wav(self, token): | |
# fast mode, use wavtokenizer decoder | |
new_tensor = torch.tensor(token.to(self.device)).unsqueeze(0) | |
features = self.wavtokenizer.codes_to_features(new_tensor) | |
bandwidth_id = torch.tensor([0]).to(self.device) | |
wav = self.wavtokenizer.to(self.device).decode(features, bandwidth_id=bandwidth_id) | |
wav = wav.cpu().detach() | |
return wav | |
def inference(self, text, audio_token, audio_token_len, text_token, text_token_len, embeddings=None, | |
prompt_text=torch.zeros(1, 0, dtype=torch.int32), | |
llm_prompt_audio_token=torch.zeros(1, 0, dtype=torch.int32), | |
flow_prompt_audio_token=torch.zeros(1, 0, dtype=torch.int32), | |
prompt_audio_feat=torch.zeros(1, 0, 80), sample_rate=48000, duration_to_gen = 30, task="continuation", trim = True, stream=False, **kwargs): | |
# this_uuid is used to track variables related to this inference thread | |
# support tasks: | |
# text to music task | |
# music continuation task | |
# require either audio input only or text and audio inputs | |
this_uuid = str(uuid.uuid1()) | |
if self.llm: | |
with self.lock: | |
self.music_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False | |
p = threading.Thread(target=self.llm_job, args=(text_token, audio_token, audio_token_len, prompt_text, llm_prompt_audio_token, embeddings, this_uuid, duration_to_gen, task)) | |
p.start() | |
if stream is True: | |
token_hop_len = self.token_min_hop_len | |
while True: | |
time.sleep(0.1) | |
if len(self.music_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len: | |
this_music_audio = self.token2wav(token=text_token, | |
token_len=text_token_len, | |
uuid=this_uuid, | |
sample_rate=sample_rate, | |
finalize=False) | |
yield {'music_audio': this_music_audio.cpu()} | |
with self.lock: | |
self.music_token_dict[this_uuid] = self.music_token_dict[this_uuid][token_hop_len:] | |
# increase token_hop_len for better audio quality | |
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor)) | |
if self.llm_end_dict[this_uuid] is True and len(self.music_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len: | |
break | |
p.join() | |
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None | |
this_music_token = torch.concat(self.music_token_dict[this_uuid], dim=1) | |
with self.flow_hift_context: | |
this_music_audio = self.token2wav(token=this_music_token, | |
prompt_token=flow_prompt_audio_token, | |
prompt_feat=prompt_audio_feat, | |
embedding=flow_embedding, | |
uuid=this_uuid, | |
sample_rate=sample_rate, | |
finalize=True) | |
yield {'music_audio': this_music_audio.cpu()} | |
else: | |
# deal with all tokens | |
if self.fast: | |
if task == "reconstruct": | |
assert audio_token is None | |
this_music_token = audio_token | |
this_music_audio = self.acoustictoken2wav(token=this_music_token) | |
else: | |
if self.llm: | |
p.join() | |
print(len(self.music_token_dict[this_uuid])) | |
this_music_token = torch.concat(self.music_token_dict[this_uuid], dim=1) | |
print(this_music_token.shape) | |
else: | |
this_music_token = text_token | |
logging.info("using wavtokenizer generator without flow matching") | |
this_music_audio = self.semantictoken2wav(token=this_music_token) | |
print(this_music_audio.shape) | |
else: | |
if self.llm: | |
p.join() | |
if len(self.music_token_dict[this_uuid]) != 0: | |
this_music_token = torch.concat(self.music_token_dict[this_uuid], dim=1) | |
else: | |
print(f"The list of tensors is empty for UUID: {this_uuid}") | |
else: | |
this_music_token = text_token | |
logging.info(f"LLM generated audio token length: {this_music_token.shape[1]}") | |
logging.info(f"using flow matching and {self.generator} generator") | |
if self.generator == "hifi": | |
if (embeddings[1] - embeddings[0]) <= duration_to_gen: | |
if trim: | |
trim_length = (int((embeddings[1] - embeddings[0])*75)) | |
this_music_token = this_music_token[:, :trim_length] | |
logging.info(f"After trimmed, generated audio token length: {this_music_token.shape[1]}") | |
elif (embeddings[1] - embeddings[0]) < 1: | |
logging.info(f"Given audio length={(embeddings[1] - embeddings[0])}, which is too short, please give a longer audio length.") | |
this_music_audio = self.token2wav(token=this_music_token, | |
token_len=torch.LongTensor([this_music_token.size(1)]), | |
uuid=this_uuid, | |
sample_rate=sample_rate, | |
finalize=True) | |
logging.info(f"Generated audio sequence length: {this_music_audio.shape[1]}") | |
elif self.generator == "wavtokenizer": | |
if (embeddings[1] - embeddings[0]) < duration_to_gen: | |
if trim: | |
trim_length = (int((embeddings[1] - embeddings[0])*75)) | |
this_music_token = this_music_token[:,:trim_length] | |
logging.info(f"After trimmed, generated audio token length: {this_music_token.shape[1]}") | |
elif (embeddings[1] - embeddings[0]) < 1: | |
logging.info(f"Given audio length={(embeddings[1] - embeddings[0])}, which is too short, please give a longer audio length.") | |
this_music_audio = self.semantictoken2wav(token=this_music_token) | |
yield {'music_audio': this_music_audio.cpu()} | |
torch.cuda.synchronize() |