Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,514 Bytes
96fe5d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
# Copyright (c) 2024 Alibaba Inc
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import threading
import time
from contextlib import nullcontext
import uuid
from inspiremusic.music_tokenizer.vqvae import VQVAE
from inspiremusic.wavtokenizer.decoder.pretrained import WavTokenizer
from torch.cuda.amp import autocast
import logging
import torch
import os
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
class InspireMusicModel:
def __init__(self,
llm: torch.nn.Module,
flow: torch.nn.Module,
music_tokenizer: torch.nn.Module,
wavtokenizer: torch.nn.Module,
fast: bool = False,
fp16: bool = True,
):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.llm = llm
self.flow = flow
self.music_tokenizer = music_tokenizer
self.wavtokenizer = wavtokenizer
self.fp16 = fp16
self.token_min_hop_len = 100
self.token_max_hop_len = 200
self.token_overlap_len = 20
# mel fade in out
self.mel_overlap_len = 34
self.mel_window = np.hamming(2 * self.mel_overlap_len)
# hift cache
self.mel_cache_len = 20
self.source_cache_len = int(self.mel_cache_len * 256)
# rtf and decoding related
self.stream_scale_factor = 1
assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
self.lock = threading.Lock()
# dict used to store session related variable
self.music_token_dict = {}
self.llm_end_dict = {}
self.mel_overlap_dict = {}
self.fast = fast
self.generator = "hifi"
def load(self, llm_model, flow_model, hift_model, wavtokenizer_model):
if llm_model is not None:
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
self.llm.to(self.device).eval()
else:
self.llm = None
if flow_model is not None:
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device))
self.flow.to(self.device).eval()
if hift_model is not None:
if ".pt" not in hift_model:
self.music_tokenizer = VQVAE( hift_model + '/config.json',
hift_model + '/model.pt', with_encoder=True)
else:
self.music_tokenizer = VQVAE(os.path.dirname(hift_model) + '/config.json',
hift_model, with_encoder=True)
self.music_tokenizer.to(self.device).eval()
if wavtokenizer_model is not None:
if ".pt" not in wavtokenizer_model:
self.wavtokenizer = WavTokenizer.from_pretrained_feat( wavtokenizer_model + '/config.yaml',
wavtokenizer_model + '/model.pt')
else:
self.wavtokenizer = WavTokenizer.from_pretrained_feat( os.path.dirname(wavtokenizer_model) + '/config.yaml',
wavtokenizer_model )
self.wavtokenizer.to(self.device)
def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model):
assert self.fp16 is True, "we only provide fp16 jit model, set fp16=True if you want to use jit model"
llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device)
self.llm.text_encoder = llm_text_encoder
llm_llm = torch.jit.load(llm_llm_model)
self.llm.llm = llm_llm
flow_encoder = torch.jit.load(flow_encoder_model)
self.flow.encoder = flow_encoder
def load_onnx(self, flow_decoder_estimator_model):
import onnxruntime
option = onnxruntime.SessionOptions()
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
option.intra_op_num_threads = 1
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
del self.flow.decoder.estimator
self.flow.decoder.estimator = onnxruntime.InferenceSession(flow_decoder_estimator_model, sess_options=option, providers=providers)
def llm_job(self, text, audio_token, audio_token_len, prompt_text, llm_prompt_audio_token, embeddings, uuid, duration_to_gen, task):
with self.llm_context:
local_res = []
with autocast(enabled=self.fp16):
inference_kwargs = {
'text': text.to(self.device),
'text_len': torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
'prompt_text': prompt_text.to(self.device),
'prompt_text_len': torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
'prompt_audio_token': llm_prompt_audio_token.to(self.device),
'prompt_audio_token_len': torch.tensor([llm_prompt_audio_token.shape[1]], dtype=torch.int32).to(self.device),
'embeddings': embeddings,
'duration_to_gen': duration_to_gen,
'task': task
}
if audio_token is not None:
inference_kwargs['audio_token'] = audio_token.to(self.device)
else:
inference_kwargs['audio_token'] = torch.Tensor([0]).to(self.device)
if audio_token_len is not None:
inference_kwargs['audio_token_len'] = audio_token_len.to(self.device)
else:
inference_kwargs['audio_token_len'] = torch.Tensor([0]).to(self.device)
for i in self.llm.inference(**inference_kwargs):
local_res.append(i)
self.music_token_dict[uuid] = local_res
self.llm_end_dict[uuid] = True
# def token2wav(self, token, token_len, text, text_len, uuid, sample_rate, finalize=False):
def token2wav(self, token, token_len, uuid, sample_rate, finalize=False, flow_cfg=None):
# if self.flow is not None:
# if isinstance(self.flow,MaskedDiffWithText):
# codec_embed = self.flow.inference(token=token.to(self.device),
# token_len=token_len.to(self.device),
# text_token=text,
# text_token_len=text_len,
# )
# else:
if flow_cfg is not None:
codec_embed = self.flow.inference_cfg(token=token.to(self.device),
token_len=token_len.to(self.device),
sample_rate=sample_rate
)
else:
codec_embed = self.flow.inference(token=token.to(self.device),
token_len=token_len.to(self.device),
sample_rate=sample_rate
)
# use music_tokenizer decoder
wav = self.music_tokenizer.generator(codec_embed)
wav = wav.squeeze(0).cpu().detach()
return wav
def acoustictoken2wav(self, token):
# use music_tokenizer to generate waveform from token
token = token.view(token.size(0), -1, 4)
# codec = token.view(1, -1, 4)
codec_embed = self.music_tokenizer.quantizer.embed(torch.tensor(token).long().to(self.device)).cuda()
wav = self.music_tokenizer.generator(codec_embed)
wav = wav.squeeze(0).cpu().detach()
return wav
def semantictoken2wav(self, token):
# fast mode, use wavtokenizer decoder
new_tensor = torch.tensor(token.to(self.device)).unsqueeze(0)
features = self.wavtokenizer.codes_to_features(new_tensor)
bandwidth_id = torch.tensor([0]).to(self.device)
wav = self.wavtokenizer.to(self.device).decode(features, bandwidth_id=bandwidth_id)
wav = wav.cpu().detach()
return wav
@torch.inference_mode()
def inference(self, text, audio_token, audio_token_len, text_token, text_token_len, embeddings=None,
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
llm_prompt_audio_token=torch.zeros(1, 0, dtype=torch.int32),
flow_prompt_audio_token=torch.zeros(1, 0, dtype=torch.int32),
prompt_audio_feat=torch.zeros(1, 0, 80), sample_rate=48000, duration_to_gen = 30, task="continuation", trim = True, stream=False, **kwargs):
# this_uuid is used to track variables related to this inference thread
# support tasks:
# text to music task
# music continuation task
# require either audio input only or text and audio inputs
this_uuid = str(uuid.uuid1())
if self.llm:
with self.lock:
self.music_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
p = threading.Thread(target=self.llm_job, args=(text_token, audio_token, audio_token_len, prompt_text, llm_prompt_audio_token, embeddings, this_uuid, duration_to_gen, task))
p.start()
if stream is True:
token_hop_len = self.token_min_hop_len
while True:
time.sleep(0.1)
if len(self.music_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
this_music_audio = self.token2wav(token=text_token,
token_len=text_token_len,
uuid=this_uuid,
sample_rate=sample_rate,
finalize=False)
yield {'music_audio': this_music_audio.cpu()}
with self.lock:
self.music_token_dict[this_uuid] = self.music_token_dict[this_uuid][token_hop_len:]
# increase token_hop_len for better audio quality
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
if self.llm_end_dict[this_uuid] is True and len(self.music_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
break
p.join()
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
this_music_token = torch.concat(self.music_token_dict[this_uuid], dim=1)
with self.flow_hift_context:
this_music_audio = self.token2wav(token=this_music_token,
prompt_token=flow_prompt_audio_token,
prompt_feat=prompt_audio_feat,
embedding=flow_embedding,
uuid=this_uuid,
sample_rate=sample_rate,
finalize=True)
yield {'music_audio': this_music_audio.cpu()}
else:
# deal with all tokens
if self.fast:
if task == "reconstruct":
assert audio_token is None
this_music_token = audio_token
this_music_audio = self.acoustictoken2wav(token=this_music_token)
else:
if self.llm:
p.join()
print(len(self.music_token_dict[this_uuid]))
this_music_token = torch.concat(self.music_token_dict[this_uuid], dim=1)
print(this_music_token.shape)
else:
this_music_token = text_token
logging.info("using wavtokenizer generator without flow matching")
this_music_audio = self.semantictoken2wav(token=this_music_token)
print(this_music_audio.shape)
else:
if self.llm:
p.join()
if len(self.music_token_dict[this_uuid]) != 0:
this_music_token = torch.concat(self.music_token_dict[this_uuid], dim=1)
else:
print(f"The list of tensors is empty for UUID: {this_uuid}")
else:
this_music_token = text_token
logging.info(f"LLM generated audio token length: {this_music_token.shape[1]}")
logging.info(f"using flow matching and {self.generator} generator")
if self.generator == "hifi":
if (embeddings[1] - embeddings[0]) <= duration_to_gen:
if trim:
trim_length = (int((embeddings[1] - embeddings[0])*75))
this_music_token = this_music_token[:, :trim_length]
logging.info(f"After trimmed, generated audio token length: {this_music_token.shape[1]}")
elif (embeddings[1] - embeddings[0]) < 1:
logging.info(f"Given audio length={(embeddings[1] - embeddings[0])}, which is too short, please give a longer audio length.")
this_music_audio = self.token2wav(token=this_music_token,
token_len=torch.LongTensor([this_music_token.size(1)]),
uuid=this_uuid,
sample_rate=sample_rate,
finalize=True)
logging.info(f"Generated audio sequence length: {this_music_audio.shape[1]}")
elif self.generator == "wavtokenizer":
if (embeddings[1] - embeddings[0]) < duration_to_gen:
if trim:
trim_length = (int((embeddings[1] - embeddings[0])*75))
this_music_token = this_music_token[:,:trim_length]
logging.info(f"After trimmed, generated audio token length: {this_music_token.shape[1]}")
elif (embeddings[1] - embeddings[0]) < 1:
logging.info(f"Given audio length={(embeddings[1] - embeddings[0])}, which is too short, please give a longer audio length.")
this_music_audio = self.semantictoken2wav(token=this_music_token)
yield {'music_audio': this_music_audio.cpu()}
torch.cuda.synchronize() |