chong.zhang commited on
Commit
96fe5d9
·
1 Parent(s): 43dbb02
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. app.py +205 -263
  2. inspiremusic/__init__.py +0 -0
  3. inspiremusic/bin/export_jit.py +74 -0
  4. inspiremusic/bin/export_onnx.py +112 -0
  5. inspiremusic/bin/flow_only_infer.py +150 -0
  6. inspiremusic/bin/inference.py +266 -0
  7. inspiremusic/bin/train.py +194 -0
  8. inspiremusic/cli/__init__.py +0 -0
  9. inspiremusic/cli/frontend.py +106 -0
  10. inspiremusic/cli/inference.py +296 -0
  11. inspiremusic/cli/inspiremusic.py +133 -0
  12. inspiremusic/cli/model.py +297 -0
  13. inspiremusic/dataset/__init__.py +0 -0
  14. inspiremusic/dataset/dataset.py +154 -0
  15. inspiremusic/dataset/processor.py +595 -0
  16. inspiremusic/flow/decoder.py +277 -0
  17. inspiremusic/flow/flow.py +143 -0
  18. inspiremusic/flow/flow_matching.py +167 -0
  19. inspiremusic/flow/length_regulator.py +69 -0
  20. inspiremusic/hifigan/discriminator.py +140 -0
  21. inspiremusic/hifigan/f0_predictor.py +55 -0
  22. inspiremusic/hifigan/generator.py +411 -0
  23. inspiremusic/hifigan/hifigan.py +66 -0
  24. inspiremusic/llm/llm.py +402 -0
  25. inspiremusic/metrics/clap_score.py +135 -0
  26. inspiremusic/metrics/openl3_fd.py +338 -0
  27. inspiremusic/metrics/passt_kld.py +232 -0
  28. inspiremusic/music_tokenizer/__init__.py +0 -0
  29. inspiremusic/music_tokenizer/env.py +29 -0
  30. inspiremusic/music_tokenizer/meldataset.py +226 -0
  31. inspiremusic/music_tokenizer/models.py +548 -0
  32. inspiremusic/music_tokenizer/vqvae.py +58 -0
  33. inspiremusic/text/abs_tokenizer.py +34 -0
  34. inspiremusic/text/tokenizer.py +76 -0
  35. inspiremusic/transformer/__init__.py +0 -0
  36. inspiremusic/transformer/activation.py +84 -0
  37. inspiremusic/transformer/attention.py +328 -0
  38. inspiremusic/transformer/convolution.py +145 -0
  39. inspiremusic/transformer/decoder.py +396 -0
  40. inspiremusic/transformer/decoder_layer.py +132 -0
  41. inspiremusic/transformer/embedding.py +294 -0
  42. inspiremusic/transformer/encoder.py +477 -0
  43. inspiremusic/transformer/encoder_layer.py +235 -0
  44. inspiremusic/transformer/label_smoothing_loss.py +97 -0
  45. inspiremusic/transformer/positionwise_feed_forward.py +115 -0
  46. inspiremusic/transformer/qwen_encoder.py +165 -0
  47. inspiremusic/transformer/subsampling.py +384 -0
  48. inspiremusic/utils/__init__.py +0 -0
  49. inspiremusic/utils/audio_utils.py +623 -0
  50. inspiremusic/utils/binary.py +155 -0
app.py CHANGED
@@ -1,193 +1,129 @@
1
  # coding=utf-8
2
 
3
- import os
4
- import librosa
5
- import base64
6
  import io
7
- import gradio as gr
8
- import re
9
-
10
  import numpy as np
11
- import torch
12
  import torchaudio
13
- from modelscope import HubApi
14
-
15
- api = HubApi()
16
-
17
- key = os.environ["apikey"] if "apikey" in os.environ else ""
18
- try:
19
- api.login(key)
20
- except:
21
- pass
22
-
23
- from funasr import AutoModel
24
-
25
- model = "iic/SenseVoiceSmall"
26
- model = AutoModel(model=model,
27
- vad_model="iic/speech_fsmn_vad_zh-cn-16k-common-pytorch",
28
- vad_kwargs={"max_single_segment_time": 30000},
29
- trust_remote_code=True,
30
- )
31
-
32
- import re
33
-
34
- emo_dict = {
35
- "<|HAPPY|>": "😊",
36
- "<|SAD|>": "😔",
37
- "<|ANGRY|>": "😡",
38
- "<|NEUTRAL|>": "",
39
- "<|FEARFUL|>": "😰",
40
- "<|DISGUSTED|>": "🤢",
41
- "<|SURPRISED|>": "😮",
42
- }
43
-
44
- event_dict = {
45
- "<|BGM|>": "🎼",
46
- "<|Speech|>": "",
47
- "<|Applause|>": "👏",
48
- "<|Laughter|>": "😀",
49
- "<|Cry|>": "😭",
50
- "<|Sneeze|>": "🤧",
51
- "<|Breath|>": "",
52
- "<|Cough|>": "🤧",
53
- }
54
-
55
- emoji_dict = {
56
- "<|nospeech|><|Event_UNK|>": "❓",
57
- "<|zh|>": "",
58
- "<|en|>": "",
59
- "<|yue|>": "",
60
- "<|ja|>": "",
61
- "<|ko|>": "",
62
- "<|nospeech|>": "",
63
- "<|HAPPY|>": "😊",
64
- "<|SAD|>": "😔",
65
- "<|ANGRY|>": "😡",
66
- "<|NEUTRAL|>": "",
67
- "<|BGM|>": "🎼",
68
- "<|Speech|>": "",
69
- "<|Applause|>": "👏",
70
- "<|Laughter|>": "😀",
71
- "<|FEARFUL|>": "😰",
72
- "<|DISGUSTED|>": "🤢",
73
- "<|SURPRISED|>": "😮",
74
- "<|Cry|>": "😭",
75
- "<|EMO_UNKNOWN|>": "",
76
- "<|Sneeze|>": "🤧",
77
- "<|Breath|>": "",
78
- "<|Cough|>": "😷",
79
- "<|Sing|>": "",
80
- "<|Speech_Noise|>": "",
81
- "<|withitn|>": "",
82
- "<|woitn|>": "",
83
- "<|GBG|>": "",
84
- "<|Event_UNK|>": "",
85
- }
86
-
87
- lang_dict = {
88
- "<|zh|>": "<|lang|>",
89
- "<|en|>": "<|lang|>",
90
- "<|yue|>": "<|lang|>",
91
- "<|ja|>": "<|lang|>",
92
- "<|ko|>": "<|lang|>",
93
- "<|nospeech|>": "<|lang|>",
94
- }
95
-
96
-
97
- emo_set = {"😊", "😔", "😡", "😰", "🤢", "😮"}
98
- event_set = {"🎼", "👏", "😀", "😭", "🤧", "😷",}
99
-
100
- notes = ["C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"]
101
-
102
- def format_str(s):
103
- for sptk in emoji_dict:
104
- s = s.replace(sptk, emoji_dict[sptk])
105
- return s
106
-
107
-
108
- def format_str_v2(s):
109
- sptk_dict = {}
110
- for sptk in emoji_dict:
111
- sptk_dict[sptk] = s.count(sptk)
112
- s = s.replace(sptk, "")
113
- emo = "<|NEUTRAL|>"
114
- for e in emo_dict:
115
- if sptk_dict[e] > sptk_dict[emo]:
116
- emo = e
117
- for e in event_dict:
118
- if sptk_dict[e] > 0:
119
- s = event_dict[e] + s
120
- s = s + emo_dict[emo]
121
-
122
- for emoji in emo_set.union(event_set):
123
- s = s.replace(" " + emoji, emoji)
124
- s = s.replace(emoji + " ", emoji)
125
- return s.strip()
126
-
127
- def format_str_v3(s):
128
- def get_emo(s):
129
- return s[-1] if s[-1] in emo_set else None
130
- def get_event(s):
131
- return s[0] if s[0] in event_set else None
132
-
133
- s = s.replace("<|nospeech|><|Event_UNK|>", "❓")
134
- for lang in lang_dict:
135
- s = s.replace(lang, "<|lang|>")
136
- s_list = [format_str_v2(s_i).strip(" ") for s_i in s.split("<|lang|>")]
137
- new_s = " " + s_list[0]
138
- cur_ent_event = get_event(new_s)
139
- for i in range(1, len(s_list)):
140
- if len(s_list[i]) == 0:
141
- continue
142
- if get_event(s_list[i]) == cur_ent_event and get_event(s_list[i]) != None:
143
- s_list[i] = s_list[i][1:]
144
- #else:
145
- cur_ent_event = get_event(s_list[i])
146
- if get_emo(s_list[i]) != None and get_emo(s_list[i]) == get_emo(new_s):
147
- new_s = new_s[:-1]
148
- new_s += s_list[i].strip().lstrip()
149
- new_s = new_s.replace("The.", " ")
150
- return new_s.strip()
151
-
152
- def model_inference(input_wav, language, fs=16000):
153
- # task_abbr = {"Speech Recognition": "ASR", "Rich Text Transcription": ("ASR", "AED", "SER")}
154
- language_abbr = {"auto": "auto", "zh": "zh", "en": "en", "yue": "yue", "ja": "ja", "ko": "ko",
155
- "nospeech": "nospeech"}
156
-
157
- # task = "Speech Recognition" if task is None else task
158
- language = "auto" if len(language) < 1 else language
159
- selected_language = language_abbr[language]
160
- # selected_task = task_abbr.get(task)
161
-
162
- # print(f"input_wav: {type(input_wav)}, {input_wav[1].shape}, {input_wav}")
163
-
164
- if isinstance(input_wav, tuple):
165
- fs, input_wav = input_wav
166
- input_wav = input_wav.astype(np.float32) / np.iinfo(np.int16).max
167
- if len(input_wav.shape) > 1:
168
- input_wav = input_wav.mean(-1)
169
- if fs != 16000:
170
- print(f"audio_fs: {fs}")
171
- resampler = torchaudio.transforms.Resample(fs, 16000)
172
- input_wav_t = torch.from_numpy(input_wav).to(torch.float32)
173
- input_wav = resampler(input_wav_t[None, :])[0, :].numpy()
174
-
175
-
176
- merge_vad = True
177
- print(f"language: {language}, merge_vad: {merge_vad}")
178
- text = model.generate(input=input_wav,
179
- cache={},
180
- language=language,
181
- use_itn=True,
182
- batch_size_s=300, merge_vad=merge_vad)
183
-
184
- print(text)
185
- text = text[0]["text"]
186
- text = format_str_v3(text)
187
- print(text)
188
-
189
- return text
190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
191
 
192
  audio_examples = [
193
  ["example/inspiremusic/inspiremusic_01.wav", "text-to-music"],
@@ -218,7 +154,7 @@ description = """
218
  - `The instrumental rock piece features a prominent bass guitar, delivering a pure and energetic sound.`
219
  - `A serene blend of instrumental and light pop, featuring soothing melodies and a gentle, soulful keyboard performance.`
220
 
221
- Recommended select audio duration is below 30 seconds. For audio longer than 30 seconds, local deployment is recommended, github repo.
222
 
223
  """
224
 
@@ -232,86 +168,92 @@ html_content = """
232
  <p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/FunAudioLLM/InspireMusic" target="_blank">Code</a> </p>
233
  <p style="font-size: 18px;margin-left: 20px;"><a href="https://iris2c.github.io/InspireMusic" target="_blank">Demo</a></p>
234
  <h2 style="font-size: 22px;margin-left: 0px;">Models</h2>
235
- <p style="font-size: 18px;margin-left: 20px;"><a href="https://modelscope.cn/models/iic/InspireMusic/summary" target="_blank">Modelscope Model</a>: </p>
236
- <p style="font-size: 18px;margin-left: 20px;"><a href="https://huggingface.co/FunAudioLLM/InspireMusic-Base" target="_blank">Huggingface Model</a></p>
237
  </div>
238
  """
239
 
240
- # 自定义表格的 HTML 和 CSS 代码
241
- centered_table_html = """
242
- <style>
243
- .centered-table {
244
- margin-left: auto;
245
- margin-right: auto;
246
- }
247
- </style>
248
- <div class="centered-table">
249
- <table border="1" style="border-collapse: collapse; width: 100%;">
250
- <tr>
251
- <th>Samples</th>
252
- <th>InspireMusic</th>
253
- <th>Text-to-Music</th>
254
- </tr>
255
-
256
- <tr>
257
- <td><a href="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/InspireMusic/demo/inspiremusic/inspiremusic_01.wav?OSSAccessKeyId=LTAI4Fmg1PUZcHLPSMGznooK&Expires=1734163633&Signature=hGhy9ACAm0ETPAGEyPhs%2BWkosrY%3D" target="_blank">normal mode</a></td>
258
- <td>Experience soothing and sensual instrumental jazz with a touch of Bossa Nova, perfect for a relaxing restaurant or spa ambiance.</td>
259
- </tr>
260
-
261
- <tr>
262
- <td><a href="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/InspireMusic/demo/inspiremusic/inspiremusic_noflow_01.wav?OSSAccessKeyId=LTAI4Fmg1PUZcHLPSMGznooK&Expires=1737403768&Signature=1AdAJxwLfGBajej0AIYk3oN0%2Bw8%3D" target="_blank">fast mode</a></td>
263
- <td>The instrumental piece exudes a playful and whimsical atmosphere, likely featuring lively and rhythmic elements. The music seems to be inspired by nature and animals, creating an engaging and light-hearted experience.</td>
264
- </tr>
265
- </table>
266
- </div>
267
- """
268
-
269
-
270
- def launch():
271
- with gr.Blocks(theme=gr.themes.Soft()) as demo:
272
- # gr.Markdown(description)
273
- gr.HTML(html_content)
274
- with gr.Column():
275
- with gr.Row():
276
- with gr.Column():
277
- text_inputs = gr.Textbox(
278
- label="Input Text",
279
- placeholder="Enter the text you want to generate music, e.g., Experience soothing and sensual instrumental jazz with a touch of Bossa Nova, perfect for a relaxing restaurant or spa ambiance.",
280
- lines=3
281
- )
282
- fn_button = gr.Button("Start", variant="primary")
283
- audio_inputs = gr.Audio(
284
- label="Upload prompt audio",
285
- )
286
- with gr.Column():
287
- with gr.Accordion("Configuration"):
288
- # task_inputs = gr.Radio(choices=["Speech Recognition", "Rich Text Transcription"],
289
- # value="Speech Recognition", label="Task")
290
- task_inputs = gr.Dropdown(choices=["text-to-music", "music-continuation"],
291
- value="text-to-music",
292
- label="Task")
293
- inference_mode_inputs = gr.Dropdown(choices=["normal", "fast"],
294
- value="normal",
295
- label="Inference Mode")
296
- cfg_input = gr.Slider(3, 10, step=1, label="CFG value")
297
- audio_length = gr.Textbox(value="30",
298
- label="Duration in seconds")
299
-
300
- gr.Examples(examples=audio_examples,
301
- inputs=[text_inputs, audio_inputs, task_inputs],
302
- examples_per_page=5)
303
-
304
- audio_output = gr.Audio(label="Audio Output")
305
-
306
- fn_button.click(model_inference, inputs=[text_inputs, audio_inputs, task_inputs], outputs=audio_output)
307
-
308
- # with gr.Accordion("More examples"):
309
- # gr.HTML(centered_table_html)
310
- demo.launch()
311
-
312
-
313
- if __name__ == "__main__":
314
- # iface.launch()
315
- launch()
 
 
 
 
 
 
316
 
317
 
 
1
  # coding=utf-8
2
 
 
 
 
3
  import io
 
 
 
4
  import numpy as np
 
5
  import torchaudio
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
+ import torch
8
+ import soundfile as sf
9
+ import gradio as gr
10
+ import spaces
11
+ from inspiremusic.cli.inference import InspireMusicUnified, set_env_variables
12
+ import os
13
+ import sys
14
+
15
+
16
+ def get_args():
17
+ parser = argparse.ArgumentParser(
18
+ description='Run inference with your model')
19
+ parser.add_argument('-m', '--model_name', default="InspireMusic-1.5B-Long",
20
+ help='Model name')
21
+
22
+ parser.add_argument('-d', '--model_dir',
23
+ help='Model folder path')
24
+
25
+ parser.add_argument('-t', '--text',
26
+ default="Experience soothing and sensual instrumental jazz with a touch of Bossa Nova, perfect for a relaxing restaurant or spa ambiance.",
27
+ help='Prompt text')
28
+
29
+ parser.add_argument('-a', '--audio_prompt', default=None,
30
+ help='Prompt audio')
31
+
32
+ parser.add_argument('-c', '--chorus', default="intro",
33
+ help='Chorus tag generation mode (e.g., random, verse, chorus, intro, outro)')
34
+
35
+ parser.add_argument('--fast', type=bool, default=False,
36
+ help='Enable fast inference mode (without flow matching)')
37
+
38
+ parser.add_argument('-g', '--gpu', type=int, default=0,
39
+ help='GPU ID for this rank, -1 for CPU')
40
+
41
+ parser.add_argument('--task', default='text-to-music',
42
+ choices=['text-to-music', 'continuation', 'reconstruct', 'super_resolution'],
43
+ help='Inference task type: text-to-music, continuation, reconstruct, super_resolution')
44
+
45
+ parser.add_argument('-r', '--result_dir', default="exp/inspiremusic",
46
+ help='Directory to save generated audio')
47
+
48
+ parser.add_argument('-o', '--output_fn', default="output_audio",
49
+ help='Output file name')
50
+
51
+ parser.add_argument('-f', '--format', type=str, default="wav",
52
+ choices=["wav", "mp3", "m4a", "flac"],
53
+ help='Format of output audio')
54
+
55
+ parser.add_argument('--sample_rate', type=int, default=24000,
56
+ help='Sampling rate of input audio')
57
+
58
+ parser.add_argument('--output_sample_rate', type=int, default=48000,
59
+ choices=[24000, 48000],
60
+ help='Sampling rate of generated output audio')
61
+
62
+ parser.add_argument('-s', '--time_start', type=float, default=0.0,
63
+ help='Start time in seconds')
64
+
65
+ parser.add_argument('-e', '--time_end', type=float, default=30.0,
66
+ help='End time in seconds')
67
+
68
+ parser.add_argument('--max_audio_prompt_length', type=float, default=5.0,
69
+ help='Maximum audio prompt length in seconds')
70
+
71
+ parser.add_argument('--min_generate_audio_seconds', type=float,
72
+ default=10.0,
73
+ help='Minimum generated audio length in seconds')
74
+
75
+ parser.add_argument('--max_generate_audio_seconds', type=float,
76
+ default=30.0,
77
+ help='Maximum generated audio length in seconds')
78
+
79
+ parser.add_argument('--fp16', type=bool, default=True,
80
+ help='Inference with fp16 model')
81
+
82
+ parser.add_argument('--fade_out', type=bool, default=True,
83
+ help='Apply fade out effect to generated audio')
84
+
85
+ parser.add_argument('--fade_out_duration', type=float, default=1.0,
86
+ help='Fade out duration in seconds')
87
+
88
+ parser.add_argument('--trim', type=bool, default=False,
89
+ help='Trim the silence ending of generated audio')
90
+
91
+ args = parser.parse_args()
92
+
93
+ if not args.model_dir:
94
+ args.model_dir = os.path.join("./pretrained_models", args.model_name)
95
+
96
+ print(args)
97
+ return args
98
+
99
+ def InspireMusic(args):
100
+ set_env_variables()
101
+ model = InspireMusicUnified(model_name=args.model_name,
102
+ model_dir=args.model_dir,
103
+ min_generate_audio_seconds=args.min_generate_audio_seconds,
104
+ max_generate_audio_seconds=args.max_generate_audio_seconds,
105
+ sample_rate=args.sample_rate,
106
+ output_sample_rate=args.output_sample_rate,
107
+ load_jit=True,
108
+ load_onnx=False,
109
+ fast=args.fast,
110
+ fp16=args.fp16,
111
+ gpu=args.gpu,
112
+ result_dir=args.result_dir)
113
+
114
+ model.inference(task=args.task,
115
+ text=args.text,
116
+ audio_prompt=args.audio_prompt,
117
+ chorus=args.chorus,
118
+ time_start=args.time_start,
119
+ time_end=args.time_end,
120
+ output_fn=args.output_fn,
121
+ max_audio_prompt_length=args.max_audio_prompt_length,
122
+ fade_out_duration=args.fade_out_duration,
123
+ output_format=args.format,
124
+ fade_out_mode=args.fade_out,
125
+ trim=args.trim)
126
+ return os.path.join(args.result_dir, f"{args.output_fn}.{args.format}")
127
 
128
  audio_examples = [
129
  ["example/inspiremusic/inspiremusic_01.wav", "text-to-music"],
 
154
  - `The instrumental rock piece features a prominent bass guitar, delivering a pure and energetic sound.`
155
  - `A serene blend of instrumental and light pop, featuring soothing melodies and a gentle, soulful keyboard performance.`
156
 
157
+ Recommended audio prompt duration is 5 seconds, generate audio length is below 30 seconds. To generate audio longer than 30 seconds, local deployment is recommended, github repo.
158
 
159
  """
160
 
 
168
  <p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/FunAudioLLM/InspireMusic" target="_blank">Code</a> </p>
169
  <p style="font-size: 18px;margin-left: 20px;"><a href="https://iris2c.github.io/InspireMusic" target="_blank">Demo</a></p>
170
  <h2 style="font-size: 22px;margin-left: 0px;">Models</h2>
171
+ <p style="font-size: 18px;margin-left: 20px;"><a href="https://modelscope.cn/models/iic/InspireMusic-1.5B-Long/summary" target="_blank">Modelscope Model</a>: </p>
172
+ <p style="font-size: 18px;margin-left: 20px;"><a href="https://huggingface.co/FunAudioLLM/InspireMusic-1.5B-Long" target="_blank">Huggingface Model</a></p>
173
  </div>
174
  """
175
 
176
+ def music_generation(task, text=None, audio=None):
177
+ args = get_args()
178
+ args.task = task
179
+ args.text = text if text
180
+ args.audio_prompt = audio if audio
181
+ generate_audio_path = InspireMusic(args)
182
+ return generate_audio_path
183
+
184
+ demo = gr.Blocks()
185
+
186
+ t2m_demo = gr.Interface(
187
+ fn=music_generation,
188
+ inputs = [
189
+ gr.Dropdown(["Text-To-Music"], value="text-to-music", multiselect=False, info="Choose a task."),
190
+ gr.Text(label="Input Text"),
191
+ ],
192
+ outputs = [
193
+ gr.Audio(label="Generated Music", type="generated audio filepath"),
194
+ ],
195
+ title = "<a href='https://github.com/FunAudioLLM/InspireMusic' target='_blank'>InspireMusic<a/>: A Unified Framework for Music, Song, Audio Generation.",
196
+ description = ("InspireMusic ([Github Repo](https://github.com/FunAudioLLM/InspireMusic)) is a fundamental AIGC toolkit and models designed for music, song, and audio generation using PyTorch."
197
+ "To try it, simply type text to generation music, or click one of the examples. "),
198
+ article = ("<p style='text-align: center'><a href='' target='_blank'>InspireMusic</a> </p>"
199
+ "<p style='text-align: center'><a href='https://openreview.net/forum?id=yBlVlS2Fd9' target='_blank'>WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling</a> </p>"),
200
+ examples = [
201
+ ["example/inspiremusic/inspiremusic_01.wav", "24000 Hz"],
202
+ ["example/ras/chorus/chorus_01.wav", "48000 Hz"],
203
+ ],
204
+ cache_examples = True,
205
+ )
206
+
207
+ con_demo = gr.Interface(
208
+ fn=music_generation,
209
+ inputs = [
210
+ gr.Dropdown(["Music Continuation"], value="continuation", multiselect=False, info="Choose a task."),
211
+ gr.Text(label="Input Text"),
212
+ gr.Audio(label="Input Audio Prompt", type="audio prompt filepath"),
213
+ ],
214
+ outputs = [
215
+ gr.Audio(label="Generated Music", type="generated audio filepath"),
216
+ ],
217
+ title = "<a href='https://github.com/FunAudioLLM/InspireMusic' target='_blank'>InspireMusic<a/>: A Unified Framework for Music, Song, Audio Generation.",
218
+ description = ("InspireMusic ([Github Repo](https://github.com/FunAudioLLM/InspireMusic)) is a fundamental AIGC toolkit and models designed for music, song, and audio generation using PyTorch."
219
+ "To try it, simply type text to generation music, or click one of the examples. "),
220
+ article = ("<p style='text-align: center'><a href='' target='_blank'>InspireMusic</a> </p>"
221
+ "<p style='text-align: center'><a href='https://openreview.net/forum?id=yBlVlS2Fd9' target='_blank'>WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling</a> </p>"),
222
+ examples = [
223
+ ["example/inspiremusic/inspiremusic_01.wav", "24000 Hz"],
224
+ ["example/ras/chorus/chorus_01.wav", "48000 Hz"],
225
+ ],
226
+ cache_examples = True,
227
+ )
228
+
229
+ con_demo = gr.Interface(
230
+ fn=music_generation,
231
+ inputs = [
232
+ gr.Dropdown(["Music Continuation"], value="continuation", multiselect=False, info="Choose a task."),
233
+ gr.Text(label="Input Text"),
234
+ gr.Audio(label="Input Audio Prompt", type="audio prompt filepath"),
235
+ ],
236
+ outputs = [
237
+ gr.Audio(label="Generated Music", type="generated audio filepath"),
238
+ ],
239
+ title = "<a href='https://github.com/FunAudioLLM/InspireMusic' target='_blank'>InspireMusic<a/>: A Unified Framework for Music, Song, Audio Generation.",
240
+ description = ("InspireMusic ([Github Repo](https://github.com/FunAudioLLM/InspireMusic)) is a fundamental AIGC toolkit and models designed for music, song, and audio generation using PyTorch."
241
+ "To try it, simply type text to generation music, or click one of the examples. "),
242
+ article = ("<p style='text-align: center'><a href='' target='_blank'>InspireMusic</a> </p>"
243
+ "<p style='text-align: center'><a href='https://openreview.net/forum?id=yBlVlS2Fd9' target='_blank'>WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling</a> </p>"),
244
+ examples = [
245
+ ["example/inspiremusic/inspiremusic_01.wav", "24000 Hz"],
246
+ ["example/ras/chorus/chorus_01.wav", "48000 Hz"],
247
+ ],
248
+ cache_examples = True,
249
+ )
250
+
251
+ with demo:
252
+ gr.TabbedInterface([t2m_demo, con_demo,],
253
+ ["Task 1: Text-to-Music",
254
+ "Task 2: Music Continuation"])
255
+ # gr.TabbedInterface([t2m_demo, con_demo, fast_demo], ["Task 1: Text-to-Music", "Task 2: Music Continuation", "Task 3: Without Flow Matching"])
256
+
257
+ demo.launch()
258
 
259
 
inspiremusic/__init__.py ADDED
File without changes
inspiremusic/bin/export_jit.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from __future__ import print_function
16
+
17
+ import argparse
18
+ import logging
19
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
20
+ import os
21
+ import sys
22
+ import torch
23
+ ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
24
+ sys.path.append('{}/../..'.format(ROOT_DIR))
25
+ sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
26
+ from inspiremusic.cli.inspiremusic import InspireMusic
27
+
28
+
29
+ def get_args():
30
+ parser = argparse.ArgumentParser(description='export your model for deployment')
31
+ parser.add_argument('--model_dir',
32
+ type=str,
33
+ default='pretrained_models/InspireMusic',
34
+ help='local path')
35
+ args = parser.parse_args()
36
+ print(args)
37
+ return args
38
+
39
+
40
+ def main():
41
+ args = get_args()
42
+ logging.basicConfig(level=logging.DEBUG,
43
+ format='%(asctime)s %(levelname)s %(message)s')
44
+
45
+ torch._C._jit_set_fusion_strategy([('STATIC', 1)])
46
+ torch._C._jit_set_profiling_mode(False)
47
+ torch._C._jit_set_profiling_executor(False)
48
+
49
+ inspiremusic = InspireMusic(args.model_dir, load_jit=False, load_onnx=False)
50
+
51
+ # 1. export llm text_encoder
52
+ llm_text_encoder = inspiremusic.model.llm.text_encoder.half()
53
+ script = torch.jit.script(llm_text_encoder)
54
+ script = torch.jit.freeze(script)
55
+ script = torch.jit.optimize_for_inference(script)
56
+ script.save('{}/llm.text_encoder.fp16.zip'.format(args.model_dir))
57
+
58
+ # 2. export llm llm
59
+ llm_llm = inspiremusic.model.llm.llm.half()
60
+ script = torch.jit.script(llm_llm)
61
+ script = torch.jit.freeze(script, preserved_attrs=['forward_chunk'])
62
+ script = torch.jit.optimize_for_inference(script)
63
+ script.save('{}/llm.llm.fp16.zip'.format(args.model_dir))
64
+
65
+ # 3. export flow encoder
66
+ flow_encoder = inspiremusic.model.flow.encoder
67
+ script = torch.jit.script(flow_encoder)
68
+ script = torch.jit.freeze(script)
69
+ script = torch.jit.optimize_for_inference(script)
70
+ script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
71
+
72
+
73
+ if __name__ == '__main__':
74
+ main()
inspiremusic/bin/export_onnx.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, [email protected])
2
+ # Copyright (c) 2024 Alibaba Inc
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from __future__ import print_function
17
+
18
+ import argparse
19
+ import logging
20
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
21
+ import os
22
+ import sys
23
+ import onnxruntime
24
+ import random
25
+ import torch
26
+ from tqdm import tqdm
27
+ ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
28
+ sys.path.append('{}/../..'.format(ROOT_DIR))
29
+ sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
30
+ from inspiremusic.cli.inspiremusic import InspireMusic
31
+
32
+
33
+ def get_dummy_input(batch_size, seq_len, out_channels, device):
34
+ x = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
35
+ mask = torch.ones((batch_size, 1, seq_len), dtype=torch.float32, device=device)
36
+ mu = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
37
+ t = torch.rand((batch_size), dtype=torch.float32, device=device)
38
+ spks = torch.rand((batch_size, out_channels), dtype=torch.float32, device=device)
39
+ cond = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
40
+ return x, mask, mu, t, spks, cond
41
+
42
+
43
+ def get_args():
44
+ parser = argparse.ArgumentParser(description='export your model for deployment')
45
+ parser.add_argument('--model_dir',
46
+ type=str,
47
+ default='pretrained_models/InspireMusic',
48
+ help='local path')
49
+ args = parser.parse_args()
50
+ print(args)
51
+ return args
52
+
53
+
54
+ def main():
55
+ args = get_args()
56
+ logging.basicConfig(level=logging.DEBUG,
57
+ format='%(asctime)s %(levelname)s %(message)s')
58
+
59
+ inspiremusic = InspireMusic(args.model_dir, load_jit=False, load_onnx=False)
60
+
61
+ # 1. export flow decoder estimator
62
+ estimator = inspiremusic.model.flow.decoder.estimator
63
+
64
+ device = inspiremusic.model.device
65
+ batch_size, seq_len = 1, 256
66
+ out_channels = inspiremusic.model.flow.decoder.estimator.out_channels
67
+ x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
68
+ torch.onnx.export(
69
+ estimator,
70
+ (x, mask, mu, t, spks, cond),
71
+ '{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
72
+ export_params=True,
73
+ opset_version=18,
74
+ do_constant_folding=True,
75
+ input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
76
+ output_names=['estimator_out'],
77
+ dynamic_axes={
78
+ 'x': {0: 'batch_size', 2: 'seq_len'},
79
+ 'mask': {0: 'batch_size', 2: 'seq_len'},
80
+ 'mu': {0: 'batch_size', 2: 'seq_len'},
81
+ 'cond': {0: 'batch_size', 2: 'seq_len'},
82
+ 't': {0: 'batch_size'},
83
+ 'spks': {0: 'batch_size'},
84
+ 'estimator_out': {0: 'batch_size', 2: 'seq_len'},
85
+ }
86
+ )
87
+
88
+ # 2. test computation consistency
89
+ option = onnxruntime.SessionOptions()
90
+ option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
91
+ option.intra_op_num_threads = 1
92
+ providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
93
+ estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
94
+ sess_options=option, providers=providers)
95
+
96
+ for _ in tqdm(range(10)):
97
+ x, mask, mu, t, spks, cond = get_dummy_input(random.randint(1, 6), random.randint(16, 512), out_channels, device)
98
+ output_pytorch = estimator(x, mask, mu, t, spks, cond)
99
+ ort_inputs = {
100
+ 'x': x.cpu().numpy(),
101
+ 'mask': mask.cpu().numpy(),
102
+ 'mu': mu.cpu().numpy(),
103
+ 't': t.cpu().numpy(),
104
+ 'spks': spks.cpu().numpy(),
105
+ 'cond': cond.cpu().numpy()
106
+ }
107
+ output_onnx = estimator_onnx.run(None, ort_inputs)[0]
108
+ torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4)
109
+
110
+
111
+ if __name__ == "__main__":
112
+ main()
inspiremusic/bin/flow_only_infer.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from __future__ import print_function
16
+
17
+ import argparse
18
+ import logging
19
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
20
+ import os
21
+ import torch
22
+ from torch.utils.data import DataLoader
23
+ import torchaudio
24
+ from hyperpyyaml import load_hyperpyyaml
25
+ from tqdm import tqdm
26
+ from inspiremusic.cli.model import InspireMusicModel
27
+ from inspiremusic.dataset.dataset import Dataset
28
+ from inspiremusic.utils.common import MUSIC_STRUCTURE_LABELS
29
+
30
+ def get_args():
31
+ parser = argparse.ArgumentParser(description='inference only with flow model')
32
+ parser.add_argument('--config', required=True, help='config file')
33
+ parser.add_argument('--prompt_data', required=True, help='prompt data file')
34
+ parser.add_argument('--flow_model', required=True, help='flow model file')
35
+ parser.add_argument('--llm_model', default=None,required=False, help='llm model file')
36
+
37
+ parser.add_argument('--music_tokenizer', required=True, help='music tokenizer model file')
38
+ parser.add_argument('--wavtokenizer', required=True, help='wavtokenizer model file')
39
+ parser.add_argument('--chorus', default="random",required=False, help='chorus tag generation mode, eg. random, verse, chorus, intro.')
40
+ parser.add_argument('--sample_rate', type=int, default=48000, required=False,
41
+ help='sampling rate of generated audio')
42
+ parser.add_argument('--min_generate_audio_seconds', type=float, default=10.0, required=False,
43
+ help='the minimum generated audio length in seconds')
44
+ parser.add_argument('--max_generate_audio_seconds', type=float, default=30.0, required=False,
45
+ help='the maximum generated audio length in seconds')
46
+ parser.add_argument('--gpu',
47
+ type=int,
48
+ default=-1,
49
+ help='gpu id for this rank, -1 for cpu')
50
+ parser.add_argument('--result_dir', required=True, help='asr result file')
51
+ args = parser.parse_args()
52
+ print(args)
53
+ return args
54
+
55
+ def main():
56
+ args = get_args()
57
+ logging.basicConfig(level=logging.DEBUG,
58
+ format='%(asctime)s %(levelname)s %(message)s')
59
+ os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
60
+
61
+ # Init inspiremusic models from configs
62
+ use_cuda = args.gpu >= 0 and torch.cuda.is_available()
63
+ device = torch.device('cuda' if use_cuda else 'cpu')
64
+ with open(args.config, 'r') as f:
65
+ configs = load_hyperpyyaml(f)
66
+
67
+ model = InspireMusicModel(None, configs['flow'], configs['hift'], configs['wavtokenizer'])
68
+ model.load(args.llm_model, args.flow_model, args.music_tokenizer, args.wavtokenizer)
69
+
70
+ if args.llm_model is None:
71
+ model.llm = None
72
+ else:
73
+ model.llm = model.llm.to(torch.float32)
74
+
75
+ if args.flow_model is None:
76
+ model.flow = None
77
+
78
+ test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=True, partition=False)
79
+ test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0)
80
+
81
+ del configs
82
+ os.makedirs(args.result_dir, exist_ok=True)
83
+ fn = os.path.join(args.result_dir, 'wav.scp')
84
+ f = open(fn, 'w')
85
+ with torch.no_grad():
86
+ for _, batch in tqdm(enumerate(test_data_loader)):
87
+ utts = batch["utts"]
88
+ assert len(utts) == 1, "inference mode only support batchsize 1"
89
+
90
+ if "semantic_token" in batch:
91
+ token = batch["semantic_token"].to(device)
92
+ token_len = batch["semantic_token_len"].to(device)
93
+ else:
94
+ if audio_token is None:
95
+ token = None
96
+ token_len = None
97
+ else:
98
+ token = audio_token.view(audio_token.size(0),-1,4)[:,:,0]
99
+ token_len = audio_token_len / 4
100
+
101
+ text_token = batch["text_token"].to(device)
102
+ text_token_len = batch["text_token_len"].to(device)
103
+ text = batch["text"]
104
+
105
+ if "time_start" not in batch.keys():
106
+ batch["time_start"] = torch.randint(0, args.min_generate_audio_seconds, (1,)).to(torch.float64)
107
+ if "time_end" not in batch.keys():
108
+ batch["time_end"] = torch.randint(args.min_generate_audio_seconds, args.max_generate_audio_seconds, (1,)).to(torch.float64)
109
+ elif (batch["time_end"].numpy()[0] - batch["time_start"].numpy()[0]) < args.min_generate_audio_seconds:
110
+ batch["time_end"] = torch.randint(int(batch["time_start"].numpy()[0] + args.min_generate_audio_seconds), int(batch["time_start"].numpy()[0] + args.max_generate_audio_seconds), (1,)).to(torch.float64)
111
+
112
+ if "chorus" not in batch.keys():
113
+ batch["chorus"] = torch.randint(1, 5, (1,))
114
+
115
+ if args.chorus == "random":
116
+ batch["chorus"] = torch.randint(1, 5, (1,))
117
+ elif args.chorus == "intro":
118
+ batch["chorus"] = torch.Tensor([0])
119
+ elif "verse" in args.chorus:
120
+ batch["chorus"] = torch.Tensor([1])
121
+ elif args.chorus == "chorus":
122
+ batch["chorus"] = torch.Tensor([2])
123
+ elif args.chorus == "outro":
124
+ batch["chorus"] = torch.Tensor([4])
125
+
126
+ time_start = batch["time_start"].to(device)
127
+ time_end = batch["time_end"].to(device)
128
+ chorus = batch["chorus"].to(torch.int)
129
+
130
+ text_prompt = f"<|{batch['time_start'].numpy()[0]}|><|{MUSIC_STRUCTURE_LABELS[chorus.numpy()[0]]}|><|{batch['text'][0]}|><|{batch['time_end'].numpy()[0]}|>"
131
+ chorus = chorus.to(device)
132
+
133
+ model_input = {"text": text, "audio_token": token, "audio_token_len": token_len,
134
+ "text_token": text_token, "text_token_len": text_token_len,
135
+ "embeddings": [time_start, time_end, chorus], "raw_text":text}
136
+
137
+ music_audios = []
138
+ for model_output in model.inference(**model_input):
139
+ music_audios.append(model_output['music_audio'])
140
+
141
+ music_key = utts[0]
142
+ music_fn = os.path.join(args.result_dir, '{}.wav'.format(music_key))
143
+ torchaudio.save(music_fn, music_audios[0], sample_rate=args.sample_rate)
144
+ f.write('{} {}\n'.format(music_key, music_fn))
145
+ f.flush()
146
+ f.close()
147
+ logging.info('Result wav.scp saved in {}'.format(fn))
148
+
149
+ if __name__ == '__main__':
150
+ main()
inspiremusic/bin/inference.py ADDED
@@ -0,0 +1,266 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from __future__ import print_function
16
+
17
+ import argparse
18
+ import logging
19
+
20
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
21
+ import os
22
+ import torch
23
+ from torch.utils.data import DataLoader
24
+ import torchaudio
25
+ from hyperpyyaml import load_hyperpyyaml
26
+ from tqdm import tqdm
27
+ from inspiremusic.cli.model import InspireMusicModel
28
+ from inspiremusic.dataset.dataset import Dataset
29
+ import time
30
+ from inspiremusic.utils.audio_utils import trim_audio, fade_out, process_audio
31
+ from inspiremusic.utils.common import MUSIC_STRUCTURE_LABELS
32
+
33
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
34
+
35
+ def get_args():
36
+ parser = argparse.ArgumentParser(description='inference only with your model')
37
+ parser.add_argument('--config', required=True, help='config file')
38
+ parser.add_argument('--prompt_data', required=True, help='prompt data file')
39
+ parser.add_argument('--flow_model', default=None, required=False, help='flow model file')
40
+ parser.add_argument('--llm_model', default=None,required=False, help='flow model file')
41
+ parser.add_argument('--music_tokenizer', required=True, help='music tokenizer model file')
42
+ parser.add_argument('--wavtokenizer', required=True, help='wavtokenizer model file')
43
+ parser.add_argument('--chorus', default="random",required=False, help='chorus tag generation mode, eg. random, verse, chorus, intro.')
44
+ parser.add_argument('--fast', action='store_true', required=False, help='True: fast inference mode, without flow matching for fast inference. False: normal inference mode, with flow matching for high quality.')
45
+ parser.add_argument('--fp16', default=True, type=bool, required=False, help='inference with fp16 model')
46
+ parser.add_argument('--fade_out', default=True, type=bool, required=False, help='add fade out effect to generated audio')
47
+ parser.add_argument('--fade_out_duration', default=1.0, type=float, required=False, help='fade out duration in seconds')
48
+ parser.add_argument('--trim', default=False, type=bool, required=False, help='trim the silence ending of generated audio')
49
+ parser.add_argument('--format', type=str, default="wav", required=False,
50
+ choices=["wav", "mp3", "m4a", "flac"],
51
+ help='sampling rate of input audio')
52
+ parser.add_argument('--sample_rate', type=int, default=24000, required=False,
53
+ help='sampling rate of input audio')
54
+ parser.add_argument('--output_sample_rate', type=int, default=48000, required=False, choices=[24000, 48000],
55
+ help='sampling rate of generated output audio')
56
+ parser.add_argument('--min_generate_audio_seconds', type=float, default=10.0, required=False,
57
+ help='the minimum generated audio length in seconds')
58
+ parser.add_argument('--max_generate_audio_seconds', type=float, default=30.0, required=False,
59
+ help='the maximum generated audio length in seconds')
60
+ parser.add_argument('--gpu',
61
+ type=int,
62
+ default=0,
63
+ help='gpu id for this rank, -1 for cpu')
64
+ parser.add_argument('--task',
65
+ default='text-to-music',
66
+ choices=['text-to-music', 'continuation', "reconstruct", "super_resolution"],
67
+ help='choose inference task type. text-to-music: text-to-music task. continuation: music continuation task. reconstruct: reconstruction of original music. super_resolution: convert original 24kHz music into 48kHz music.')
68
+ parser.add_argument('--result_dir', required=True, help='asr result file')
69
+ args = parser.parse_args()
70
+ print(args)
71
+ return args
72
+
73
+
74
+ def main():
75
+ args = get_args()
76
+ logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s')
77
+ os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
78
+
79
+ if args.fast:
80
+ args.output_sample_rate = 24000
81
+
82
+ min_generate_audio_length = int(args.output_sample_rate * args.min_generate_audio_seconds)
83
+ max_generate_audio_length = int(args.output_sample_rate * args.max_generate_audio_seconds)
84
+ assert args.min_generate_audio_seconds <= args.max_generate_audio_seconds
85
+
86
+ # Init inspiremusic models from configs
87
+ use_cuda = args.gpu >= 0 and torch.cuda.is_available()
88
+ device = torch.device('cuda' if use_cuda else 'cpu')
89
+ with open(args.config, 'r') as f:
90
+ configs = load_hyperpyyaml(f)
91
+
92
+ model = InspireMusicModel(configs['llm'], configs['flow'], configs['hift'], configs['wavtokenizer'], args.fast, args.fp16)
93
+
94
+ model.load(args.llm_model, args.flow_model, args.music_tokenizer, args.wavtokenizer)
95
+
96
+ if args.llm_model is None:
97
+ model.llm = None
98
+ else:
99
+ model.llm = model.llm.to(torch.float32)
100
+
101
+ if args.flow_model is None:
102
+ model.flow = None
103
+
104
+ test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=True, partition=False)
105
+ test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0)
106
+
107
+ del configs
108
+ os.makedirs(args.result_dir, exist_ok=True)
109
+ fn = os.path.join(args.result_dir, 'wav.scp')
110
+ f = open(fn, 'w')
111
+ caption_fn = os.path.join(args.result_dir, 'captions.txt')
112
+ caption_f = open(caption_fn, 'w')
113
+
114
+ with torch.no_grad():
115
+ for _, batch in tqdm(enumerate(test_data_loader)):
116
+ utts = batch["utts"]
117
+
118
+ assert len(utts) == 1, "inference mode only support batchsize 1"
119
+ text_token = batch["text_token"].to(device)
120
+ text_token_len = batch["text_token_len"].to(device)
121
+
122
+ if "time_start" not in batch.keys():
123
+ batch["time_start"] = torch.randint(0, args.min_generate_audio_seconds, (1,)).to(torch.float64)
124
+
125
+ if batch["time_start"].numpy()[0] > 300:
126
+ batch["time_start"] = torch.Tensor([0]).to(torch.float64)
127
+
128
+ if "time_end" not in batch.keys():
129
+ batch["time_end"] = torch.randint(int(batch["time_start"].numpy()[0] + args.min_generate_audio_seconds), int(batch["time_start"].numpy()[0] + args.max_generate_audio_seconds), (1,)).to(torch.float64)
130
+ else:
131
+ if (batch["time_end"].numpy()[0] - batch["time_start"].numpy()[0]) < args.min_generate_audio_seconds:
132
+ batch["time_end"] = torch.randint(int(batch["time_start"].numpy()[0] + args.min_generate_audio_seconds), int(batch["time_start"].numpy()[0] + args.max_generate_audio_seconds), (1,)).to(torch.float64)
133
+ elif (batch["time_end"].numpy()[0] - batch["time_start"].numpy()[0]) > args.max_generate_audio_seconds:
134
+ batch["time_end"] = torch.Tensor([(batch["time_start"].numpy()[0] + args.max_generate_audio_seconds)]).to(torch.float64)
135
+
136
+ if "chorus" not in batch.keys():
137
+ batch["chorus"] = torch.randint(1, 5, (1,))
138
+
139
+ if args.chorus == "random":
140
+ batch["chorus"] = torch.randint(1, 5, (1,))
141
+ elif args.chorus == "intro":
142
+ batch["chorus"] = torch.Tensor([0])
143
+ elif "verse" in args.chorus:
144
+ batch["chorus"] = torch.Tensor([1])
145
+ elif args.chorus == "chorus":
146
+ batch["chorus"] = torch.Tensor([2])
147
+ elif args.chorus == "outro":
148
+ batch["chorus"] = torch.Tensor([4])
149
+ else:
150
+ batch["chorus"] = batch["chorus"]
151
+
152
+ time_start = batch["time_start"].to(device)
153
+ time_end = batch["time_end"].to(device)
154
+ chorus = batch["chorus"].to(torch.int)
155
+
156
+ text_prompt = f"<|{batch['time_start'].numpy()[0]}|><|{MUSIC_STRUCTURE_LABELS[chorus.numpy()[0]]}|><|{batch['text'][0]}|><|{batch['time_end'].numpy()[0]}|>"
157
+ chorus = chorus.to(device)
158
+
159
+ if batch["acoustic_token"] is None:
160
+ audio_token = None
161
+ audio_token_len = None
162
+ else:
163
+ audio_token = batch["acoustic_token"].to(device)
164
+ audio_token_len = batch["acoustic_token_len"].to(device)
165
+
166
+ text = batch["text"]
167
+
168
+ if "semantic_token" in batch:
169
+ token = batch["semantic_token"].to(device)
170
+ token_len = batch["semantic_token_len"].to(device)
171
+ else:
172
+ if audio_token is None:
173
+ token = None
174
+ token_len = None
175
+ else:
176
+ token = audio_token.view(audio_token.size(0), -1, 4)[:, :, 0]
177
+ token_len = audio_token_len / 4
178
+
179
+ if args.task in ['text-to-music', 'continuation']:
180
+ # text to music, music continuation
181
+ model_input = {"text": text, "audio_token": token,
182
+ "audio_token_len": token_len,
183
+ "text_token": text_token,
184
+ "text_token_len": text_token_len,
185
+ "embeddings": [time_start, time_end, chorus],
186
+ "raw_text": text,
187
+ "sample_rate": args.output_sample_rate,
188
+ "duration_to_gen": args.max_generate_audio_seconds,
189
+ "task": args.task}
190
+ elif args.task in ['reconstruct', 'super_resolution']:
191
+ # audio reconstruction, audio super resolution
192
+ model_input = {"text": text, "audio_token": audio_token,
193
+ "audio_token_len": audio_token_len,
194
+ "text_token": text_token,
195
+ "text_token_len": text_token_len,
196
+ "embeddings": [time_start, time_end, chorus],
197
+ "raw_text": text,
198
+ "sample_rate": args.output_sample_rate,
199
+ "duration_to_gen": args.max_generate_audio_seconds,
200
+ "task": args.task}
201
+ else:
202
+ # zero-shot
203
+ model_input = {'text' : text,
204
+ 'text_len' : text_token_len,
205
+ 'prompt_text' : text_token,
206
+ 'prompt_text_len' : text_token_len,
207
+ 'llm_prompt_audio_token' : token,
208
+ 'llm_prompt_audio_token_len' : token_len,
209
+ 'flow_prompt_audio_token' : audio_token,
210
+ 'flow_prompt_audio_token_len': audio_token_len,
211
+ 'prompt_audio_feat' : audio_feat,
212
+ 'prompt_audio_feat_len' : audio_feat_len,
213
+ "embeddings" : [time_start,
214
+ time_end,
215
+ chorus]}
216
+
217
+ music_key = utts[0]
218
+ music_audios = []
219
+ music_fn = os.path.join(args.result_dir, f'{music_key}.{args.format}')
220
+ bench_start = time.time()
221
+
222
+ for model_output in model.inference(**model_input):
223
+ music_audios.append(model_output['music_audio'])
224
+ bench_end = time.time()
225
+ if args.trim:
226
+ music_audio = trim_audio(music_audios[0],
227
+ sample_rate=args.output_sample_rate,
228
+ threshold=0.05,
229
+ min_silence_duration=0.8)
230
+ else:
231
+ music_audio = music_audios[0]
232
+ if music_audio.shape[0] != 0:
233
+ if music_audio.shape[1] > max_generate_audio_length:
234
+ music_audio = music_audio[:, :max_generate_audio_length]
235
+ if music_audio.shape[1] >= min_generate_audio_length:
236
+ try:
237
+ if args.fade_out:
238
+ music_audio = fade_out(music_audio, args.output_sample_rate, args.fade_out_duration)
239
+ music_audio = music_audio.repeat(2, 1)
240
+ if args.format in ["wav", "flac"]:
241
+ torchaudio.save(music_fn, music_audio, sample_rate=args.output_sample_rate, encoding="PCM_S", bits_per_sample=24)
242
+ elif args.format in ["mp3", "m4a"]:
243
+ torchaudio.backend.sox_io_backend.save(filepath=music_fn, src=music_audio, sample_rate=args.output_sample_rate, format=args.format)
244
+ else:
245
+ logging.info(f"Format is not supported. Please choose from wav, mp3, m4a, flac.")
246
+ except Exception as e:
247
+ logging.info(f"Error saving file: {e}")
248
+ raise
249
+
250
+ audio_duration = music_audio.shape[1] / args.output_sample_rate
251
+ rtf = (bench_end - bench_start) / audio_duration
252
+ logging.info(f"processing time: {int(bench_end - bench_start)}s, audio length: {int(audio_duration)}s, rtf: {rtf}, text prompt: {text_prompt}")
253
+ f.write('{} {}\n'.format(music_key, music_fn))
254
+ f.flush()
255
+ caption_f.write('{}\t{}\n'.format(music_key, text_prompt))
256
+ caption_f.flush()
257
+ else:
258
+ logging.info(f"Generate audio length {music_audio.shape[1]} is shorter than min_generate_audio_length.")
259
+ else:
260
+ logging.info(f"Generate audio is empty, dim = {music_audio.shape[0]}.")
261
+ f.close()
262
+ logging.info('Result wav.scp saved in {}'.format(fn))
263
+
264
+
265
+ if __name__ == '__main__':
266
+ main()
inspiremusic/bin/train.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from __future__ import print_function
16
+ import argparse
17
+ import datetime
18
+ import logging
19
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
20
+ from copy import deepcopy
21
+ import torch
22
+ import torch.distributed as dist
23
+ import deepspeed
24
+ import glob
25
+ import os
26
+ from hyperpyyaml import load_hyperpyyaml
27
+ from torch.cuda.amp import GradScaler, autocast
28
+ from torch.distributed.elastic.multiprocessing.errors import record
29
+ from peft import get_peft_config, get_peft_model, LoraConfig, TaskType
30
+ from inspiremusic.utils.executor import Executor
31
+ from inspiremusic.utils.train_utils import (
32
+ init_distributed,
33
+ init_dataset_and_dataloader,
34
+ init_optimizer_and_scheduler,
35
+ init_summarywriter, save_model,
36
+ wrap_cuda_model, check_modify_and_save_config)
37
+
38
+
39
+ def get_args():
40
+ parser = argparse.ArgumentParser(description='training your network')
41
+ parser.add_argument('--train_engine',
42
+ default='torch_ddp',
43
+ choices=['torch_ddp', 'deepspeed'],
44
+ help='Engine for paralleled training')
45
+ parser.add_argument('--model', required=True, help='model which will be trained')
46
+ parser.add_argument('--config', required=True, help='config file')
47
+ parser.add_argument('--train_data', required=True, help='train data file')
48
+ parser.add_argument('--cv_data', required=True, help='cv data file')
49
+ parser.add_argument('--checkpoint', help='checkpoint model')
50
+ parser.add_argument('--model_dir', required=True, help='save model dir')
51
+ parser.add_argument('--tensorboard_dir',
52
+ default='tensorboard',
53
+ help='tensorboard log dir')
54
+ parser.add_argument('--ddp.dist_backend',
55
+ dest='dist_backend',
56
+ default='nccl',
57
+ choices=['nccl', 'gloo'],
58
+ help='distributed backend')
59
+ parser.add_argument('--num_workers',
60
+ default=0,
61
+ type=int,
62
+ help='number of subprocess workers for reading')
63
+ parser.add_argument('--prefetch',
64
+ default=100,
65
+ type=int,
66
+ help='prefetch number')
67
+ parser.add_argument('--pin_memory',
68
+ action='store_true',
69
+ default=True,
70
+ help='Use pinned memory buffers used for reading')
71
+ parser.add_argument('--deepspeed.save_states',
72
+ dest='save_states',
73
+ default='model_only',
74
+ choices=['model_only', 'model+optimizer'],
75
+ help='save model/optimizer states')
76
+ parser.add_argument('--timeout',
77
+ default=30,
78
+ type=int,
79
+ help='timeout (in seconds) of inspiremusic_join.')
80
+ parser.add_argument('--fp16',
81
+ action='store_true',
82
+ default=False,
83
+ help='Enable fp16 mixed precision training')
84
+ parser.add_argument('--lora',
85
+ action='store_true',
86
+ default=False,
87
+ help='Enable LoRA training')
88
+ parser.add_argument('--lora_rank',
89
+ default=4,
90
+ type=int,
91
+ help='LoRA rank')
92
+ parser.add_argument('--lora_alpha',
93
+ default=16,
94
+ type=int,
95
+ help='LoRA alpha')
96
+ parser.add_argument('--lora_dropout',
97
+ default=0.1,
98
+ type=float,
99
+ help='LoRA dropout rate')
100
+ parser.add_argument('--lora_target_modules',
101
+ nargs='+',
102
+ default=["k_proj","v_proj"],
103
+ help='Target modules to apply LoRA (e.g., ["q_proj", "v_proj"])')
104
+
105
+ parser = deepspeed.add_config_arguments(parser)
106
+ args = parser.parse_args()
107
+ return args
108
+
109
+
110
+ @record
111
+ def main():
112
+ args = get_args()
113
+ logging.basicConfig(level=logging.DEBUG,
114
+ format='%(asctime)s %(levelname)s %(message)s')
115
+
116
+ override_dict = {k: None for k in ['llm', 'flow', 'hift'] if k != args.model}
117
+ with open(args.config, 'r') as f:
118
+ configs = load_hyperpyyaml(f, overrides=override_dict)
119
+ configs['train_conf'].update(vars(args))
120
+
121
+ # Init env for ddp
122
+ init_distributed(args)
123
+
124
+ # Get dataset & dataloader
125
+ train_dataset, cv_dataset, train_data_loader, cv_data_loader = \
126
+ init_dataset_and_dataloader(args, configs)
127
+
128
+ # Do some sanity checks and save config to arsg.model_dir
129
+ configs = check_modify_and_save_config(args, configs)
130
+
131
+ # Tensorboard summary
132
+ writer = init_summarywriter(args)
133
+
134
+ # load checkpoint
135
+ model = configs[args.model]
136
+
137
+ if args.checkpoint is not None:
138
+ model.load_state_dict(torch.load(args.checkpoint, map_location='cpu'))
139
+ else:
140
+ # Find and load the latest checkpoint
141
+ checkpoint_files = glob.glob(os.path.join(args.model_dir, '*.pt'))
142
+
143
+ if checkpoint_files:
144
+ latest_checkpoint = max(checkpoint_files, key=os.path.getctime)
145
+ logging.info(f"Loaded latest checkpoint from {latest_checkpoint}")
146
+
147
+ model.load_state_dict(torch.load(latest_checkpoint, map_location='cpu'))
148
+
149
+ if args.lora:
150
+ logging.info("Applying LoRA to the model...")
151
+ if not args.lora_target_modules:
152
+ raise ValueError("No target modules specified for LoRA. Please provide --lora_target_modules.")
153
+ lora_config = LoraConfig(
154
+ task_type="CAUSAL_LM", # Change to appropriate task type
155
+ inference_mode=False,
156
+ r=args.lora_rank,
157
+ lora_alpha=args.lora_alpha,
158
+ lora_dropout=args.lora_dropout,
159
+ target_modules=args.lora_target_modules
160
+ )
161
+ model.llm.model = get_peft_model(model.llm.model, lora_config)
162
+ # Optionally freeze the base model
163
+ else:
164
+ logging.info("LoRA is not enabled. Training the full model.")
165
+
166
+ # Dispatch model from cpu to gpu
167
+ model = wrap_cuda_model(args, model)
168
+
169
+ # Get optimizer & scheduler
170
+ model, optimizer, scheduler = init_optimizer_and_scheduler(args, configs, model)
171
+
172
+ # Initialize AMP for torch_ddp if fp16 is enabled
173
+ scaler = None
174
+ if args.fp16:
175
+ scaler = GradScaler()
176
+ logging.info("Initialized AMP GradScaler for mixed precision training.")
177
+
178
+ # Save init checkpoints
179
+ info_dict = deepcopy(configs['train_conf'])
180
+
181
+ # Get executor
182
+ executor = Executor()
183
+
184
+ # Start training loop
185
+ for epoch in range(info_dict['max_epoch']):
186
+ executor.epoch = epoch
187
+ train_dataset.set_epoch(epoch)
188
+ dist.barrier()
189
+ group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout))
190
+ executor.train_one_epoch(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, group_join, scaler=scaler)
191
+ dist.destroy_process_group(group_join)
192
+
193
+ if __name__ == '__main__':
194
+ main()
inspiremusic/cli/__init__.py ADDED
File without changes
inspiremusic/cli/frontend.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from functools import partial
15
+ import onnxruntime
16
+ import torch
17
+ import numpy as np
18
+ import whisper
19
+ from typing import Callable
20
+ import torchaudio.compliance.kaldi as kaldi
21
+ import torchaudio
22
+ import os
23
+ import re
24
+ import inflect
25
+ from inspiremusic.cli.model import InspireMusicModel
26
+ from inspiremusic.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph
27
+ from inspiremusic.wavtokenizer.decoder.pretrained import WavTokenizer
28
+
29
+ class InspireMusicFrontEnd:
30
+ def __init__(self,
31
+ configs: Callable,
32
+ get_tokenizer: Callable,
33
+ llm_model: str,
34
+ flow_model: str,
35
+ music_tokenizer_dir: str,
36
+ audio_tokenizer_dir: str,
37
+ instruct: bool = False,
38
+ fast: bool = False,
39
+ fp16: bool = True,
40
+ allowed_special: str = 'all'):
41
+ self.tokenizer = get_tokenizer()
42
+ self.audio_tokenizer_dir = audio_tokenizer_dir
43
+ self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
44
+
45
+ self.bandwidth_id = torch.tensor([0]).to(self.device)
46
+ self.wavtokenizer = WavTokenizer.from_pretrained_feat(f"{audio_tokenizer_dir}/config.yaml", f"{audio_tokenizer_dir}/model.pt").to(self.device)
47
+
48
+ self.model = InspireMusicModel(configs['llm'], configs['flow'], configs['hift'], configs['wavtokenizer'], fast, fp16)
49
+ self.model = self.model.load(llm_model, flow_model, music_tokenizer_dir, audio_tokenizer_dir)
50
+
51
+ self.instruct = instruct
52
+ self.allowed_special = allowed_special
53
+ self.inflect_parser = inflect.engine()
54
+
55
+ def _extract_text_token(self, text):
56
+ text_token = self.tokenizer.encode(text, allowed_special=self.allowed_special)
57
+ text_token = torch.tensor([text_token], dtype=torch.int32).to(self.device)
58
+ text_token_len = torch.tensor([text_token.shape[1]], dtype=torch.int32).to(self.device)
59
+ return text_token, text_token_len
60
+
61
+ def _extract_audio_token(self, audio, sample_rate=24000):
62
+ audio = torch.tensor(audio, dtype=torch.float32, device=self.device)
63
+ _, audio_token = self.wavtokenizer.encode_infer(audio, bandwidth_id=self.bandwidth_id)
64
+ audio_token = audio_token.squeeze(0)
65
+ audio_token_len = torch.tensor([audio_token.shape[1]], dtype=torch.int32, device=self.device)
66
+ return audio_token, audio_token_len
67
+
68
+ def text_normalize(self, text, split=True):
69
+ text = text.strip()
70
+ if contains_chinese(text):
71
+ text = text.replace("\n", "")
72
+ text = replace_blank(text)
73
+ text = replace_corner_mark(text)
74
+ text = text.replace(".", "、")
75
+ text = text.replace(" - ", ",")
76
+ text = remove_bracket(text)
77
+ text = re.sub(r'[,,]+$', '。', text)
78
+ texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
79
+ token_min_n=60, merge_len=20, comma_split=False))
80
+ else:
81
+ text = spell_out_number(text, self.inflect_parser)
82
+ texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
83
+ token_min_n=60, merge_len=20, comma_split=False))
84
+ if split is False:
85
+ return text
86
+ return texts
87
+
88
+ def frontend_text_to_music(self, text, time_start, time_end, chorus):
89
+ text_token, text_token_len = self._extract_text_token(text)
90
+ model_input = {"text": text, "audio_token": None, "audio_token_len": None,
91
+ "text_token": text_token, "text_token_len": text_token_len,
92
+ "embeddings": [time_start, time_end, chorus], "raw_text":text}
93
+ return model_input
94
+
95
+ def frontend_continuation(self, text, audio, time_start, time_end, chorus, target_sr=24000):
96
+ if text is None:
97
+ text_token = None
98
+ text_token_len = None
99
+ else:
100
+ text_token, text_token_len = self._extract_text_token(text)
101
+ audio_token, audio_token_len = self._extract_audio_token(audio, target_sr)
102
+ model_input = {"text": text, "audio_token": audio_token, "audio_token_len": audio_token_len,
103
+ "text_token": text_token, "text_token_len": text_token_len,
104
+ "embeddings": [time_start, time_end, chorus], "raw_text":text}
105
+ return model_input
106
+
inspiremusic/cli/inference.py ADDED
@@ -0,0 +1,296 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+ import sys
17
+ import torchaudio
18
+ import time
19
+ import logging
20
+ import argparse
21
+
22
+ from modelscope import snapshot_download
23
+ from inspiremusic.cli.inspiremusic import InspireMusic
24
+ from inspiremusic.utils.file_utils import logging
25
+ import torch
26
+ from inspiremusic.utils.audio_utils import trim_audio, fade_out
27
+ from transformers import AutoModel
28
+
29
+ def set_env_variables():
30
+ os.environ['PYTHONIOENCODING'] = 'UTF-8'
31
+ os.environ['TOKENIZERS_PARALLELISM'] = 'False'
32
+ current_working_dir = os.getcwd()
33
+ main_root = os.path.realpath(os.path.join(current_working_dir, '../../'))
34
+ bin_dir = os.path.join(main_root, 'inspiremusic')
35
+ third_party_matcha_tts_path = os.path.join(main_root, 'third_party', 'Matcha-TTS')
36
+ python_path = f"{main_root}:{bin_dir}:{third_party_matcha_tts_path}:{os.environ.get('PYTHONPATH', '')}"
37
+ os.environ['PYTHONPATH'] = python_path
38
+ sys.path.extend([main_root, third_party_matcha_tts_path])
39
+
40
+ class InspireMusicUnified:
41
+ def __init__(self,
42
+ model_name: str = "InspireMusic-1.5B-Long",
43
+ model_dir: str = None,
44
+ min_generate_audio_seconds: float = 10.0,
45
+ max_generate_audio_seconds: float = 30.0,
46
+ sample_rate: int = 24000,
47
+ output_sample_rate: int = 48000,
48
+ load_jit: bool = True,
49
+ load_onnx: bool = False,
50
+ fast: bool = False,
51
+ fp16: bool = True,
52
+ gpu: int = 0,
53
+ result_dir: str = None):
54
+ os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu)
55
+
56
+ # Set model_dir or default to downloading if it doesn't exist
57
+ self.model_dir = model_dir or f"../../pretrained_models/{model_name}"
58
+ if not os.path.exists(self.model_dir):
59
+ self.model_dir = snapshot_download(f"iic/{model_name}", cache_dir=self.model_dir)
60
+
61
+ self.sample_rate = sample_rate
62
+ self.output_sample_rate = 24000 if fast else output_sample_rate
63
+ self.result_dir = result_dir or f"exp/{model_name}"
64
+ os.makedirs(self.result_dir, exist_ok=True)
65
+
66
+ self.min_generate_audio_seconds = min_generate_audio_seconds
67
+ self.max_generate_audio_seconds = max_generate_audio_seconds
68
+ self.min_generate_audio_length = int(self.output_sample_rate * self.min_generate_audio_seconds)
69
+ self.max_generate_audio_length = int(self.output_sample_rate * self.max_generate_audio_seconds)
70
+ assert self.min_generate_audio_seconds <= self.max_generate_audio_seconds, "Min audio seconds must be less than or equal to max audio seconds"
71
+
72
+ use_cuda = gpu >= 0 and torch.cuda.is_available()
73
+ self.device = torch.device('cuda' if use_cuda else 'cpu')
74
+ self.model = InspireMusic(self.model_dir, load_jit=load_jit, load_onnx=load_onnx, fast=fast, fp16=fp16)
75
+
76
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
77
+
78
+ @torch.inference_mode()
79
+ def inference(self,
80
+ task: str = 'text-to-music',
81
+ text: str = None,
82
+ audio_prompt: str = None, # audio prompt file path
83
+ chorus: str = "verse",
84
+ time_start: float = 0.0,
85
+ time_end: float = 30.0,
86
+ output_fn: str = "output_audio",
87
+ max_audio_prompt_length: float = 5.0,
88
+ fade_out_duration: float = 1.0,
89
+ output_format: str = "wav",
90
+ fade_out_mode: bool = True,
91
+ trim: bool = False,
92
+ ):
93
+
94
+ with torch.no_grad():
95
+ text_prompt = f"<|{time_start}|><|{chorus}|><|{text}|><|{time_end}|>"
96
+ chorus_dict = {"random": torch.randint(1, 5, (1,)).item(), "intro" : 0, "verse": 1, "chorus": 2, "outro": 4}
97
+ chorus = chorus_dict.get(chorus, 1)
98
+ chorus = torch.tensor([chorus], dtype=torch.int).to(self.device)
99
+
100
+ time_start_tensor = torch.tensor([time_start], dtype=torch.float64).to(self.device)
101
+ time_end_tensor = torch.tensor([time_end], dtype=torch.float64).to(self.device)
102
+
103
+ music_fn = os.path.join(self.result_dir, f'{output_fn}.{output_format}')
104
+
105
+ bench_start = time.time()
106
+
107
+ if task == 'text-to-music':
108
+ model_input = {
109
+ "text" : text,
110
+ "audio_prompt" : audio_prompt,
111
+ "time_start" : time_start_tensor,
112
+ "time_end" : time_end_tensor,
113
+ "chorus" : chorus,
114
+ "task" : task,
115
+ "stream" : False,
116
+ "duration_to_gen": self.max_generate_audio_seconds,
117
+ "sr" : self.sample_rate
118
+ }
119
+ elif task == 'continuation':
120
+ if audio_prompt is not None:
121
+ audio, _ = process_audio(audio_prompt, self.sample_rate)
122
+ if audio.size(1) < self.sample_rate:
123
+ logging.warning("Warning: Input prompt audio length is shorter than 1s. Please provide an appropriate length audio prompt and try again.")
124
+ audio = None
125
+ else:
126
+ max_audio_prompt_length_samples = int(max_audio_prompt_length * self.sample_rate)
127
+ audio = audio[:, :max_audio_prompt_length_samples] # Trimming prompt audio
128
+
129
+ model_input = {
130
+ "text" : text,
131
+ "audio_prompt" : audio,
132
+ "time_start" : time_start_tensor,
133
+ "time_end" : time_end_tensor,
134
+ "chorus" : chorus,
135
+ "task" : task,
136
+ "stream" : False,
137
+ "duration_to_gen": self.max_generate_audio_seconds,
138
+ "sr" : self.sample_rate
139
+ }
140
+
141
+ music_audios = []
142
+ for model_output in self.model.cli_inference(**model_input):
143
+ music_audios.append(model_output['music_audio'])
144
+
145
+ bench_end = time.time()
146
+
147
+ if trim:
148
+ music_audio = trim_audio(music_audios[0],
149
+ sample_rate=self.output_sample_rate,
150
+ threshold=0.05,
151
+ min_silence_duration=0.8)
152
+ else:
153
+ music_audio = music_audios[0]
154
+
155
+ if music_audio.shape[0] != 0:
156
+ if music_audio.shape[1] > self.max_generate_audio_length:
157
+ music_audio = music_audio[:, :self.max_generate_audio_length]
158
+
159
+ if music_audio.shape[1] >= self.min_generate_audio_length:
160
+ try:
161
+ if fade_out_mode:
162
+ music_audio = fade_out(music_audio, self.output_sample_rate, fade_out_duration)
163
+
164
+ music_audio = music_audio.repeat(2, 1)
165
+
166
+ if output_format in ["wav", "flac"]:
167
+ torchaudio.save(music_fn, music_audio,
168
+ sample_rate=self.output_sample_rate,
169
+ encoding="PCM_S",
170
+ bits_per_sample=24)
171
+ elif output_format in ["mp3", "m4a"]:
172
+ torchaudio.backend.sox_io_backend.save(
173
+ filepath=music_fn, src=music_audio,
174
+ sample_rate=self.output_sample_rate,
175
+ format=output_format)
176
+ else:
177
+ logging.info("Format is not supported. Please choose from wav, mp3, m4a, flac.")
178
+
179
+ except Exception as e:
180
+ logging.error(f"Error saving file: {e}")
181
+ raise
182
+
183
+ audio_duration = music_audio.shape[1] / self.output_sample_rate
184
+ rtf = (bench_end - bench_start) / audio_duration
185
+ logging.info(f"Processing time: {int(bench_end - bench_start)}s, audio length: {int(audio_duration)}s, rtf: {rtf}, text prompt: {text_prompt}")
186
+
187
+ else:
188
+ logging.error(f"Generated audio length is shorter than minimum required audio length.")
189
+
190
+ def get_args():
191
+ parser = argparse.ArgumentParser(description='Run inference with your model')
192
+ parser.add_argument('-m', '--model_name', default="InspireMusic-1.5B-Long",
193
+ help='Model name')
194
+
195
+ parser.add_argument('-d', '--model_dir',
196
+ help='Model folder path')
197
+
198
+ parser.add_argument('-t', '--text', default="Experience soothing and sensual instrumental jazz with a touch of Bossa Nova, perfect for a relaxing restaurant or spa ambiance.",
199
+ help='Prompt text')
200
+
201
+ parser.add_argument('-a', '--audio_prompt', default=None,
202
+ help='Prompt audio')
203
+
204
+ parser.add_argument('-c', '--chorus', default="intro",
205
+ help='Chorus tag generation mode (e.g., random, verse, chorus, intro, outro)')
206
+
207
+ parser.add_argument('-f', '--fast', type=bool, default=False,
208
+ help='Enable fast inference mode (without flow matching)')
209
+
210
+ parser.add_argument('-g', '--gpu', type=int, default=0,
211
+ help='GPU ID for this rank, -1 for CPU')
212
+
213
+ parser.add_argument('--task', default='text-to-music', choices=['text-to-music', 'continuation', 'reconstruct', 'super_resolution'],
214
+ help='Inference task type: text-to-music, continuation, reconstruct, super_resolution')
215
+
216
+ parser.add_argument('-r', '--result_dir', default="exp/inspiremusic",
217
+ help='Directory to save generated audio')
218
+
219
+ parser.add_argument('-o', '--output_fn', default="output_audio",
220
+ help='Output file name')
221
+
222
+ parser.add_argument('--format', type=str, default="wav", choices=["wav", "mp3", "m4a", "flac"],
223
+ help='Format of output audio')
224
+
225
+ parser.add_argument('--sample_rate', type=int, default=24000,
226
+ help='Sampling rate of input audio')
227
+
228
+ parser.add_argument('--output_sample_rate', type=int, default=48000, choices=[24000, 48000],
229
+ help='Sampling rate of generated output audio')
230
+
231
+ parser.add_argument('-s', '--time_start', type=float, default=0.0,
232
+ help='Start time in seconds')
233
+
234
+ parser.add_argument('-e', '--time_end', type=float, default=30.0,
235
+ help='End time in seconds')
236
+
237
+ parser.add_argument('--max_audio_prompt_length', type=float, default=5.0,
238
+ help='Maximum audio prompt length in seconds')
239
+
240
+ parser.add_argument('--min_generate_audio_seconds', type=float, default=10.0,
241
+ help='Minimum generated audio length in seconds')
242
+
243
+ parser.add_argument('--max_generate_audio_seconds', type=float, default=30.0,
244
+ help='Maximum generated audio length in seconds')
245
+
246
+ parser.add_argument('--fp16', type=bool, default=True,
247
+ help='Inference with fp16 model')
248
+
249
+ parser.add_argument('--fade_out', type=bool, default=True,
250
+ help='Apply fade out effect to generated audio')
251
+
252
+ parser.add_argument('--fade_out_duration', type=float, default=1.0,
253
+ help='Fade out duration in seconds')
254
+
255
+ parser.add_argument('--trim', type=bool, default=False,
256
+ help='Trim the silence ending of generated audio')
257
+
258
+ args = parser.parse_args()
259
+
260
+ if not args.model_dir:
261
+ args.model_dir = os.path.join("../../pretrained_models", args.model_name)
262
+
263
+ print(args)
264
+ return args
265
+
266
+ def main():
267
+ set_env_variables()
268
+ args = get_args()
269
+ model = InspireMusicUnified(model_name = args.model_name,
270
+ model_dir = args.model_dir,
271
+ min_generate_audio_seconds = args.min_generate_audio_seconds,
272
+ max_generate_audio_seconds = args.max_generate_audio_seconds,
273
+ sample_rate = args.sample_rate,
274
+ output_sample_rate = args.output_sample_rate,
275
+ load_jit = True,
276
+ load_onnx = False,
277
+ fast = args.fast,
278
+ fp16 = args.fp16,
279
+ gpu = args.gpu,
280
+ result_dir = args.result_dir)
281
+
282
+ model.inference(task = args.task,
283
+ text = args.text,
284
+ audio_prompt = args.audio_prompt,
285
+ chorus = args.chorus,
286
+ time_start = args.time_start,
287
+ time_end = args.time_end,
288
+ output_fn = args.output_fn,
289
+ max_audio_prompt_length = args.max_audio_prompt_length,
290
+ fade_out_duration = args.fade_out_duration,
291
+ output_format = args.format,
292
+ fade_out_mode = args.fade_out,
293
+ trim = args.trim)
294
+
295
+ if __name__ == "__main__":
296
+ main()
inspiremusic/cli/inspiremusic.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import os
15
+ import time
16
+ from tqdm import tqdm
17
+ from hyperpyyaml import load_hyperpyyaml
18
+ from modelscope import snapshot_download
19
+ from inspiremusic.cli.frontend import InspireMusicFrontEnd
20
+ from inspiremusic.cli.model import InspireMusicModel
21
+ from inspiremusic.utils.file_utils import logging
22
+ import torch
23
+
24
+ class InspireMusic:
25
+ def __init__(self, model_dir, load_jit=True, load_onnx=False, fast = False, fp16=True):
26
+ instruct = True if '-Instruct' in model_dir else False
27
+ self.model_dir = model_dir
28
+ if not os.path.exists(model_dir):
29
+ model_dir = snapshot_download(model_dir)
30
+ with open('{}/inspiremusic.yaml'.format(model_dir), 'r') as f:
31
+ configs = load_hyperpyyaml(f)
32
+
33
+ self.frontend = InspireMusicFrontEnd(configs,
34
+ configs['get_tokenizer'],
35
+ '{}/llm.pt'.format(model_dir),
36
+ '{}/flow.pt'.format(model_dir),
37
+ '{}/music_tokenizer/'.format(model_dir),
38
+ '{}/wavtokenizer/'.format(model_dir),
39
+ instruct,
40
+ fast,
41
+ fp16,
42
+ configs['allowed_special'])
43
+
44
+ self.model = InspireMusicModel(configs['llm'], configs['flow'], configs['hift'], configs['wavtokenizer'], fast, fp16)
45
+ self.model.load('{}/llm.pt'.format(model_dir),
46
+ '{}/flow.pt'.format(model_dir),
47
+ '{}/music_tokenizer/'.format(model_dir),
48
+ '{}/wavtokenizer/model.pt'.format(model_dir))
49
+ del configs
50
+
51
+ @torch.inference_mode()
52
+ def inference(self, task, text, audio, time_start, time_end, chorus, stream=False, sr=24000):
53
+ if task == "text-to-music":
54
+ for i in tqdm(self.frontend.text_normalize(text, split=True)):
55
+ model_input = self.frontend.frontend_text_to_music(i, time_start, time_end, chorus)
56
+ start_time = time.time()
57
+ logging.info('prompt text {}'.format(i))
58
+ for model_output in self.model.inference(**model_input, stream=stream):
59
+ music_audios_len = model_output['music_audio'].shape[1] / sr
60
+ logging.info('yield music len {}, rtf {}'.format(music_audios_len, (time.time() - start_time) / music_audios_len))
61
+ yield model_output
62
+ start_time = time.time()
63
+
64
+ elif task == "continuation":
65
+ if text is None:
66
+ if audio is not None:
67
+ for i in tqdm(audio):
68
+ model_input = self.frontend.frontend_continuation(None, i, time_start, time_end, chorus, sr, max_audio_length)
69
+ start_time = time.time()
70
+ logging.info('prompt text {}'.format(i))
71
+ for model_output in self.model.continuation_inference(**model_input, stream=stream):
72
+ music_audios_len = model_output['music_audio'].shape[1] / sr
73
+ logging.info('yield music len {}, rtf {}'.format(music_audios_len, (time.time() - start_time) / music_audios_len))
74
+ yield model_output
75
+ start_time = time.time()
76
+ else:
77
+ if audio is not None:
78
+ for i in tqdm(self.frontend.text_normalize(text, split=True)):
79
+ model_input = self.frontend.frontend_continuation(i, audio, time_start, time_end, chorus, sr, max_audio_length)
80
+ start_time = time.time()
81
+ logging.info('prompt text {}'.format(i))
82
+ for model_output in self.model.continuation_inference(**model_input, stream=stream):
83
+ music_audios_len = model_output['music_audio'].shape[1] / sr
84
+ logging.info('yield music len {}, rtf {}'.format(music_audios_len, (time.time() - start_time) / music_audios_len))
85
+ yield model_output
86
+ start_time = time.time()
87
+ else:
88
+ print("Please input text or audio.")
89
+ else:
90
+ print("Currently only support text-to-music and music continuation tasks.")
91
+
92
+ @torch.inference_mode()
93
+ def cli_inference(self, text, audio_prompt, time_start, time_end, chorus, task, stream=False, duration_to_gen=30, sr=24000):
94
+ if task == "text-to-music":
95
+ model_input = self.frontend.frontend_text_to_music(text, time_start, time_end, chorus)
96
+ logging.info('prompt text {}'.format(text))
97
+ elif task == "continuation":
98
+ model_input = self.frontend.frontend_continuation(text, audio_prompt, time_start, time_end, chorus, sr)
99
+ logging.info('prompt audio length: {}'.format(len(audio_prompt)))
100
+
101
+ start_time = time.time()
102
+ for model_output in self.model.inference(**model_input, duration_to_gen=duration_to_gen, task=task):
103
+ music_audios_len = model_output['music_audio'].shape[1] / sr
104
+ logging.info('yield music len {}, rtf {}'.format(music_audios_len, (time.time() - start_time) / music_audios_len))
105
+ yield model_output
106
+ start_time = time.time()
107
+
108
+ @torch.inference_mode()
109
+ def inference_zero_shot(self, text, prompt_text, prompt_audio_16k, stream=False, sr=24000):
110
+ prompt_text = self.frontend.text_normalize(prompt_text, split=False)
111
+ for i in tqdm(self.frontend.text_normalize(text, split=True)):
112
+ model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_audio_16k)
113
+ start_time = time.time()
114
+ logging.info('prompt text {}'.format(i))
115
+ for model_output in self.model.inference(**model_input, stream=stream):
116
+ audio_len = model_output['music_audio'].shape[1] / sr
117
+ logging.info('yield audio len {}, rtf {}'.format(audio_len, (time.time() - start_time) / audio_len))
118
+ yield model_output
119
+ start_time = time.time()
120
+ @torch.inference_mode()
121
+ def inference_instruct(self, text, spk_id, instruct_text, stream=False, sr=24000):
122
+ if self.frontend.instruct is False:
123
+ raise ValueError('{} do not support instruct inference'.format(self.model_dir))
124
+ instruct_text = self.frontend.text_normalize(instruct_text, split=False)
125
+ for i in tqdm(self.frontend.text_normalize(text, split=True)):
126
+ model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
127
+ start_time = time.time()
128
+ logging.info('prompt text {}'.format(i))
129
+ for model_output in self.model.inference(**model_input, stream=stream):
130
+ audio_len = model_output['music_audio'].shape[1] / sr
131
+ logging.info('yield audio len {}, rtf {}'.format(audio_len, (time.time() - start_time) / audio_len))
132
+ yield model_output
133
+ start_time = time.time()
inspiremusic/cli/model.py ADDED
@@ -0,0 +1,297 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import torch
15
+ import numpy as np
16
+ import threading
17
+ import time
18
+ from contextlib import nullcontext
19
+ import uuid
20
+ from inspiremusic.utils.common import fade_in_out
21
+ from inspiremusic.music_tokenizer.vqvae import VQVAE
22
+ from inspiremusic.wavtokenizer.decoder.pretrained import WavTokenizer
23
+ from torch.cuda.amp import autocast
24
+ import logging
25
+ import torch
26
+ import os
27
+
28
+
29
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
30
+
31
+ class InspireMusicModel:
32
+
33
+ def __init__(self,
34
+ llm: torch.nn.Module,
35
+ flow: torch.nn.Module,
36
+ music_tokenizer: torch.nn.Module,
37
+ wavtokenizer: torch.nn.Module,
38
+ fast: bool = False,
39
+ fp16: bool = True,
40
+ ):
41
+ self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
42
+ self.llm = llm
43
+ self.flow = flow
44
+ self.music_tokenizer = music_tokenizer
45
+ self.wavtokenizer = wavtokenizer
46
+ self.fp16 = fp16
47
+ self.token_min_hop_len = 100
48
+ self.token_max_hop_len = 200
49
+ self.token_overlap_len = 20
50
+ # mel fade in out
51
+ self.mel_overlap_len = 34
52
+ self.mel_window = np.hamming(2 * self.mel_overlap_len)
53
+ # hift cache
54
+ self.mel_cache_len = 20
55
+ self.source_cache_len = int(self.mel_cache_len * 256)
56
+ # rtf and decoding related
57
+ self.stream_scale_factor = 1
58
+ assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
59
+ self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
60
+ self.lock = threading.Lock()
61
+ # dict used to store session related variable
62
+ self.music_token_dict = {}
63
+ self.llm_end_dict = {}
64
+ self.mel_overlap_dict = {}
65
+ self.fast = fast
66
+ self.generator = "hifi"
67
+
68
+ def load(self, llm_model, flow_model, hift_model, wavtokenizer_model):
69
+ if llm_model is not None:
70
+ self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
71
+ self.llm.to(self.device).eval()
72
+ else:
73
+ self.llm = None
74
+ if flow_model is not None:
75
+ self.flow.load_state_dict(torch.load(flow_model, map_location=self.device))
76
+ self.flow.to(self.device).eval()
77
+ if hift_model is not None:
78
+ if ".pt" not in hift_model:
79
+ self.music_tokenizer = VQVAE( hift_model + '/config.json',
80
+ hift_model + '/model.pt', with_encoder=True)
81
+ else:
82
+ self.music_tokenizer = VQVAE(os.path.dirname(hift_model) + '/config.json',
83
+ hift_model, with_encoder=True)
84
+ self.music_tokenizer.to(self.device).eval()
85
+ if wavtokenizer_model is not None:
86
+ if ".pt" not in wavtokenizer_model:
87
+ self.wavtokenizer = WavTokenizer.from_pretrained_feat( wavtokenizer_model + '/config.yaml',
88
+ wavtokenizer_model + '/model.pt')
89
+ else:
90
+ self.wavtokenizer = WavTokenizer.from_pretrained_feat( os.path.dirname(wavtokenizer_model) + '/config.yaml',
91
+ wavtokenizer_model )
92
+ self.wavtokenizer.to(self.device)
93
+
94
+ def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model):
95
+ assert self.fp16 is True, "we only provide fp16 jit model, set fp16=True if you want to use jit model"
96
+ llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device)
97
+ self.llm.text_encoder = llm_text_encoder
98
+ llm_llm = torch.jit.load(llm_llm_model)
99
+ self.llm.llm = llm_llm
100
+ flow_encoder = torch.jit.load(flow_encoder_model)
101
+ self.flow.encoder = flow_encoder
102
+
103
+ def load_onnx(self, flow_decoder_estimator_model):
104
+ import onnxruntime
105
+ option = onnxruntime.SessionOptions()
106
+ option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
107
+ option.intra_op_num_threads = 1
108
+ providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
109
+ del self.flow.decoder.estimator
110
+ self.flow.decoder.estimator = onnxruntime.InferenceSession(flow_decoder_estimator_model, sess_options=option, providers=providers)
111
+
112
+ def llm_job(self, text, audio_token, audio_token_len, prompt_text, llm_prompt_audio_token, embeddings, uuid, duration_to_gen, task):
113
+ with self.llm_context:
114
+ local_res = []
115
+ with autocast(enabled=self.fp16):
116
+ inference_kwargs = {
117
+ 'text': text.to(self.device),
118
+ 'text_len': torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
119
+ 'prompt_text': prompt_text.to(self.device),
120
+ 'prompt_text_len': torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
121
+ 'prompt_audio_token': llm_prompt_audio_token.to(self.device),
122
+ 'prompt_audio_token_len': torch.tensor([llm_prompt_audio_token.shape[1]], dtype=torch.int32).to(self.device),
123
+ 'embeddings': embeddings,
124
+ 'duration_to_gen': duration_to_gen,
125
+ 'task': task
126
+ }
127
+
128
+ if audio_token is not None:
129
+ inference_kwargs['audio_token'] = audio_token.to(self.device)
130
+ else:
131
+ inference_kwargs['audio_token'] = torch.Tensor([0]).to(self.device)
132
+
133
+ if audio_token_len is not None:
134
+ inference_kwargs['audio_token_len'] = audio_token_len.to(self.device)
135
+ else:
136
+ inference_kwargs['audio_token_len'] = torch.Tensor([0]).to(self.device)
137
+
138
+ for i in self.llm.inference(**inference_kwargs):
139
+ local_res.append(i)
140
+
141
+ self.music_token_dict[uuid] = local_res
142
+ self.llm_end_dict[uuid] = True
143
+
144
+ # def token2wav(self, token, token_len, text, text_len, uuid, sample_rate, finalize=False):
145
+ def token2wav(self, token, token_len, uuid, sample_rate, finalize=False, flow_cfg=None):
146
+ # if self.flow is not None:
147
+ # if isinstance(self.flow,MaskedDiffWithText):
148
+ # codec_embed = self.flow.inference(token=token.to(self.device),
149
+ # token_len=token_len.to(self.device),
150
+ # text_token=text,
151
+ # text_token_len=text_len,
152
+ # )
153
+ # else:
154
+ if flow_cfg is not None:
155
+ codec_embed = self.flow.inference_cfg(token=token.to(self.device),
156
+ token_len=token_len.to(self.device),
157
+ sample_rate=sample_rate
158
+ )
159
+ else:
160
+ codec_embed = self.flow.inference(token=token.to(self.device),
161
+ token_len=token_len.to(self.device),
162
+ sample_rate=sample_rate
163
+ )
164
+ # use music_tokenizer decoder
165
+ wav = self.music_tokenizer.generator(codec_embed)
166
+ wav = wav.squeeze(0).cpu().detach()
167
+ return wav
168
+
169
+ def acoustictoken2wav(self, token):
170
+ # use music_tokenizer to generate waveform from token
171
+ token = token.view(token.size(0), -1, 4)
172
+ # codec = token.view(1, -1, 4)
173
+ codec_embed = self.music_tokenizer.quantizer.embed(torch.tensor(token).long().to(self.device)).cuda()
174
+ wav = self.music_tokenizer.generator(codec_embed)
175
+ wav = wav.squeeze(0).cpu().detach()
176
+ return wav
177
+
178
+ def semantictoken2wav(self, token):
179
+ # fast mode, use wavtokenizer decoder
180
+ new_tensor = torch.tensor(token.to(self.device)).unsqueeze(0)
181
+ features = self.wavtokenizer.codes_to_features(new_tensor)
182
+ bandwidth_id = torch.tensor([0]).to(self.device)
183
+ wav = self.wavtokenizer.to(self.device).decode(features, bandwidth_id=bandwidth_id)
184
+ wav = wav.cpu().detach()
185
+ return wav
186
+
187
+ @torch.inference_mode()
188
+ def inference(self, text, audio_token, audio_token_len, text_token, text_token_len, embeddings=None,
189
+ prompt_text=torch.zeros(1, 0, dtype=torch.int32),
190
+ llm_prompt_audio_token=torch.zeros(1, 0, dtype=torch.int32),
191
+ flow_prompt_audio_token=torch.zeros(1, 0, dtype=torch.int32),
192
+ prompt_audio_feat=torch.zeros(1, 0, 80), sample_rate=48000, duration_to_gen = 30, task="continuation", trim = True, stream=False, **kwargs):
193
+
194
+ # this_uuid is used to track variables related to this inference thread
195
+ # support tasks:
196
+ # text to music task
197
+ # music continuation task
198
+ # require either audio input only or text and audio inputs
199
+
200
+ this_uuid = str(uuid.uuid1())
201
+
202
+ if self.llm:
203
+ with self.lock:
204
+ self.music_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
205
+
206
+ p = threading.Thread(target=self.llm_job, args=(text_token, audio_token, audio_token_len, prompt_text, llm_prompt_audio_token, embeddings, this_uuid, duration_to_gen, task))
207
+ p.start()
208
+
209
+ if stream is True:
210
+ token_hop_len = self.token_min_hop_len
211
+ while True:
212
+ time.sleep(0.1)
213
+ if len(self.music_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
214
+ this_music_audio = self.token2wav(token=text_token,
215
+ token_len=text_token_len,
216
+ uuid=this_uuid,
217
+ sample_rate=sample_rate,
218
+ finalize=False)
219
+ yield {'music_audio': this_music_audio.cpu()}
220
+ with self.lock:
221
+ self.music_token_dict[this_uuid] = self.music_token_dict[this_uuid][token_hop_len:]
222
+ # increase token_hop_len for better audio quality
223
+ token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
224
+ if self.llm_end_dict[this_uuid] is True and len(self.music_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
225
+ break
226
+ p.join()
227
+ # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
228
+ this_music_token = torch.concat(self.music_token_dict[this_uuid], dim=1)
229
+ with self.flow_hift_context:
230
+ this_music_audio = self.token2wav(token=this_music_token,
231
+ prompt_token=flow_prompt_audio_token,
232
+ prompt_feat=prompt_audio_feat,
233
+ embedding=flow_embedding,
234
+ uuid=this_uuid,
235
+ sample_rate=sample_rate,
236
+ finalize=True)
237
+ yield {'music_audio': this_music_audio.cpu()}
238
+ else:
239
+ # deal with all tokens
240
+ if self.fast:
241
+ if task == "reconstruct":
242
+ assert audio_token is None
243
+ this_music_token = audio_token
244
+ this_music_audio = self.acoustictoken2wav(token=this_music_token)
245
+ else:
246
+ if self.llm:
247
+ p.join()
248
+ print(len(self.music_token_dict[this_uuid]))
249
+ this_music_token = torch.concat(self.music_token_dict[this_uuid], dim=1)
250
+ print(this_music_token.shape)
251
+ else:
252
+ this_music_token = text_token
253
+
254
+ logging.info("using wavtokenizer generator without flow matching")
255
+ this_music_audio = self.semantictoken2wav(token=this_music_token)
256
+ print(this_music_audio.shape)
257
+
258
+ else:
259
+ if self.llm:
260
+ p.join()
261
+ if len(self.music_token_dict[this_uuid]) != 0:
262
+ this_music_token = torch.concat(self.music_token_dict[this_uuid], dim=1)
263
+ else:
264
+ print(f"The list of tensors is empty for UUID: {this_uuid}")
265
+ else:
266
+ this_music_token = text_token
267
+ logging.info(f"LLM generated audio token length: {this_music_token.shape[1]}")
268
+ logging.info(f"using flow matching and {self.generator} generator")
269
+
270
+ if self.generator == "hifi":
271
+ if (embeddings[1] - embeddings[0]) <= duration_to_gen:
272
+ if trim:
273
+ trim_length = (int((embeddings[1] - embeddings[0])*75))
274
+ this_music_token = this_music_token[:, :trim_length]
275
+ logging.info(f"After trimmed, generated audio token length: {this_music_token.shape[1]}")
276
+ elif (embeddings[1] - embeddings[0]) < 1:
277
+ logging.info(f"Given audio length={(embeddings[1] - embeddings[0])}, which is too short, please give a longer audio length.")
278
+
279
+ this_music_audio = self.token2wav(token=this_music_token,
280
+ token_len=torch.LongTensor([this_music_token.size(1)]),
281
+ uuid=this_uuid,
282
+ sample_rate=sample_rate,
283
+ finalize=True)
284
+ logging.info(f"Generated audio sequence length: {this_music_audio.shape[1]}")
285
+ elif self.generator == "wavtokenizer":
286
+ if (embeddings[1] - embeddings[0]) < duration_to_gen:
287
+ if trim:
288
+ trim_length = (int((embeddings[1] - embeddings[0])*75))
289
+ this_music_token = this_music_token[:,:trim_length]
290
+ logging.info(f"After trimmed, generated audio token length: {this_music_token.shape[1]}")
291
+ elif (embeddings[1] - embeddings[0]) < 1:
292
+ logging.info(f"Given audio length={(embeddings[1] - embeddings[0])}, which is too short, please give a longer audio length.")
293
+
294
+ this_music_audio = self.semantictoken2wav(token=this_music_token)
295
+
296
+ yield {'music_audio': this_music_audio.cpu()}
297
+ torch.cuda.synchronize()
inspiremusic/dataset/__init__.py ADDED
File without changes
inspiremusic/dataset/dataset.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
2
+ # 2024 Alibaba Inc
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import random
17
+ import json
18
+ import math
19
+ from functools import partial
20
+
21
+ import torch
22
+ import torch.distributed as dist
23
+ from torch.utils.data import IterableDataset
24
+ from inspiremusic.utils.file_utils import read_lists, read_json_lists
25
+
26
+ class Processor(IterableDataset):
27
+
28
+ def __init__(self, source, f, *args, **kw):
29
+ assert callable(f)
30
+ self.source = source
31
+ self.f = f
32
+ self.args = args
33
+ self.kw = kw
34
+
35
+ def set_epoch(self, epoch):
36
+ self.source.set_epoch(epoch)
37
+
38
+ def __iter__(self):
39
+ """ Return an iterator over the source dataset processed by the
40
+ given processor.
41
+ """
42
+ assert self.source is not None
43
+ assert callable(self.f)
44
+ return self.f(iter(self.source), *self.args, **self.kw)
45
+
46
+ def apply(self, f):
47
+ assert callable(f)
48
+ return Processor(self, f, *self.args, **self.kw)
49
+
50
+
51
+ class DistributedSampler:
52
+
53
+ def __init__(self, shuffle=True, partition=True):
54
+ self.epoch = -1
55
+ self.update()
56
+ self.shuffle = shuffle
57
+ self.partition = partition
58
+
59
+ def update(self):
60
+ assert dist.is_available()
61
+ if dist.is_initialized():
62
+ self.rank = dist.get_rank()
63
+ self.world_size = dist.get_world_size()
64
+ else:
65
+ self.rank = 0
66
+ self.world_size = 1
67
+ worker_info = torch.utils.data.get_worker_info()
68
+ if worker_info is None:
69
+ self.worker_id = 0
70
+ self.num_workers = 1
71
+ else:
72
+ self.worker_id = worker_info.id
73
+ self.num_workers = worker_info.num_workers
74
+ return dict(rank=self.rank,
75
+ world_size=self.world_size,
76
+ worker_id=self.worker_id,
77
+ num_workers=self.num_workers)
78
+
79
+ def set_epoch(self, epoch):
80
+ self.epoch = epoch
81
+
82
+ def sample(self, data):
83
+ """ Sample data according to rank/world_size/num_workers
84
+
85
+ Args:
86
+ data(List): input data list
87
+
88
+ Returns:
89
+ List: data list after sample
90
+ """
91
+ data = list(range(len(data)))
92
+ # force datalist even
93
+
94
+ if self.partition:
95
+ if self.shuffle:
96
+ random.Random(self.epoch).shuffle(data)
97
+ if len(data) < self.world_size:
98
+ print(len(data), self.world_size)
99
+ data = data * math.ceil(self.world_size / len(data))
100
+ data = data[:self.world_size]
101
+ data = data[self.rank::self.world_size]
102
+ if len(data) < self.num_workers:
103
+ data = data * math.ceil(self.num_workers / len(data))
104
+ data = data[:self.num_workers]
105
+ data = data[self.worker_id::self.num_workers]
106
+ return data
107
+
108
+
109
+ class DataList(IterableDataset):
110
+
111
+ def __init__(self, lists, shuffle=True, partition=True):
112
+ self.lists = lists
113
+ self.sampler = DistributedSampler(shuffle, partition)
114
+
115
+ def set_epoch(self, epoch):
116
+ self.sampler.set_epoch(epoch)
117
+
118
+ def __iter__(self):
119
+ sampler_info = self.sampler.update()
120
+ indexes = self.sampler.sample(self.lists)
121
+ for index in indexes:
122
+ data = dict(src=self.lists[index])
123
+ data.update(sampler_info)
124
+ yield data
125
+
126
+
127
+ def Dataset(data_list_file,
128
+ data_pipeline,
129
+ mode='train',
130
+ shuffle=True,
131
+ partition=True
132
+ ):
133
+ """ Construct dataset from arguments
134
+
135
+ We have two shuffle stage in the Dataset. The first is global
136
+ shuffle at shards tar/raw file level. The second is global shuffle
137
+ at training samples level.
138
+
139
+ Args:
140
+ data_type(str): raw/shard
141
+ tokenizer (BaseTokenizer): tokenizer to tokenize
142
+ partition(bool): whether to do data partition in terms of rank
143
+ """
144
+ assert mode in ['train', 'inference', 'processing']
145
+ lists = read_lists(data_list_file)
146
+
147
+ dataset = DataList(lists,
148
+ shuffle=shuffle,
149
+ partition=partition)
150
+
151
+ for func in data_pipeline:
152
+ dataset = Processor(dataset, func, mode=mode)
153
+
154
+ return dataset
inspiremusic/dataset/processor.py ADDED
@@ -0,0 +1,595 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import logging
15
+ import random
16
+
17
+ import pyarrow.parquet as pq
18
+ import torch
19
+ import torchaudio
20
+ from torch.nn.utils.rnn import pad_sequence
21
+ import torch.nn.functional as F
22
+ import numpy as np
23
+ import re
24
+
25
+ torchaudio.set_audio_backend('soundfile')
26
+
27
+ AUDIO_FORMAT_SETS = {'flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'}
28
+ CHORUS = {"intro": 0, "chorus": 1, "verse1": 2, "verse2": 3, "verse": 2,
29
+ "outro": 4}
30
+
31
+ metadata_pattern = re.compile(r'^\[(ti|ar|al|by|offset):.*\]$')
32
+ timestamp_pattern = re.compile(r'^\[\d{2}:\d{2}\.\d{2}\](.*)$')
33
+
34
+
35
+ def parquet_opener(data, mode='train', audio_data={}):
36
+ """ Give url or local file, return file descriptor
37
+ Inplace operation.
38
+
39
+ Args:
40
+ data(Iterable[str]): url or local file list
41
+
42
+ Returns:
43
+ Iterable[{src, stream}]
44
+ """
45
+ for sample in data:
46
+ assert 'src' in sample
47
+
48
+ url = sample['src']
49
+ try:
50
+ df = pq.read_table(url).to_pandas()
51
+ for i in df.index:
52
+ sample.update(dict(df.loc[i]))
53
+ yield {**sample}
54
+ except Exception as ex:
55
+ logging.warning('Failed to open {}, ex info {}'.format(url, ex))
56
+
57
+
58
+ def clean_lyrics(data, mode="train"):
59
+ for sample in data:
60
+ lyrics = sample["text"]
61
+ cleaned = []
62
+ for line in lyrics.splitlines():
63
+ if metadata_pattern.match(line):
64
+ continue
65
+ timestamp_match = timestamp_pattern.match(line)
66
+ if timestamp_match:
67
+ lyric = timestamp_match.group(1).strip()
68
+ if lyric:
69
+ cleaned.append(lyric)
70
+ else:
71
+ if line.strip():
72
+ cleaned.append(line.strip())
73
+ sample["text"] = '\n'.join(cleaned)
74
+ yield sample
75
+
76
+
77
+ def cut_by_length(data, max_length=8000, num_times=4, mode="train"):
78
+ for sample in data:
79
+ if "semantic_token" in sample:
80
+ sample["semantic_token"] = [
81
+ sample["semantic_token"][0][:max_length]]
82
+ if "acoustic_token" not in sample:
83
+ sample["acoustic_token"] = sample["speech_token"]
84
+ sample["acoustic_token"] = sample["acoustic_token"][
85
+ :max_length * num_times]
86
+
87
+ yield sample
88
+
89
+
90
+ def filter(data,
91
+ max_length=22500, # 22500 #5min #10240
92
+ max_acoustic_length=45000,
93
+ min_length=10,
94
+ min_acoustic_length=150,
95
+ token_max_length=200,
96
+ token_min_length=1,
97
+ min_output_input_ratio=0.0005,
98
+ max_output_input_ratio=1,
99
+ mode='train'):
100
+ """ Filter sample according to feature and label length
101
+ Inplace operation.
102
+
103
+ Args::
104
+ data: Iterable[{key, wav, label, sample_rate}]
105
+ max_length: drop utterance which is greater than max_length(10ms)
106
+ min_length: drop utterance which is less than min_length(10ms)
107
+ token_max_length: drop utterance which is greater than
108
+ token_max_length, especially when use char unit for
109
+ english modeling
110
+ token_min_length: drop utterance which is
111
+ less than token_max_length
112
+ min_output_input_ratio: minimal ration of
113
+ token_length / feats_length(10ms)
114
+ max_output_input_ratio: maximum ration of
115
+ token_length / feats_length(10ms)
116
+
117
+ Returns:
118
+ Iterable[{key, wav, label, sample_rate}]
119
+ """
120
+ if mode == "train":
121
+ for sample in data:
122
+ if "semantic_token" in sample:
123
+ new_sample_frames = sample['semantic_token'][0].shape[0]
124
+ else:
125
+ new_sample_frames = sample['speech_token']
126
+
127
+ if "text_token" in sample:
128
+ new_sample_frames += len(sample['text_token'])
129
+
130
+ if new_sample_frames > max_length or new_sample_frames < min_length:
131
+ print(f"skipped 1 item length={new_sample_frames}")
132
+ continue
133
+
134
+ sample["chorus"] = sample["chorus"].split(",")
135
+ if not isinstance(sample["time_start"], np.ndarray):
136
+ sample["time_start"] = [sample["time_start"]]
137
+ sample["time_end"] = [sample["time_end"]]
138
+ for i, t in enumerate(sample["chorus"]):
139
+ if sample["chorus"][i] == "verse":
140
+ sample["chorus"][i] = "verse1"
141
+
142
+ yield sample
143
+
144
+ if mode == "train_flow":
145
+ for sample in data:
146
+ if "semantic_token" in sample:
147
+ new_sample_frames = sample['semantic_token'][0].shape[0]
148
+ if "acoustic_token" in sample:
149
+ target_sample_frames = sample['acoustic_token'][0].shape[0]
150
+
151
+ if new_sample_frames > max_length or new_sample_frames < min_acoustic_length or new_sample_frames < min_length or target_sample_frames > max_acoustic_length:
152
+ print(
153
+ f"skipped 1 item length={new_sample_frames}, target_length={target_sample_frames}")
154
+ continue
155
+
156
+ yield sample
157
+
158
+ elif mode == "inference":
159
+ for sample in data:
160
+ yield sample
161
+
162
+
163
+ def resample(data, resample_rate=22050, min_sample_rate=16000, mode='train'):
164
+ """ Resample data.
165
+ Inplace operation.
166
+
167
+ Args:
168
+ data: Iterable[{key, wav, label, sample_rate}]
169
+ resample_rate: target resample rate
170
+
171
+ Returns:
172
+ Iterable[{key, wav, label, sample_rate}]
173
+ """
174
+ for sample in data:
175
+ assert 'sample_rate' in sample
176
+ assert 'speech' in sample
177
+ sample_rate = sample['sample_rate']
178
+ waveform = sample['speech']
179
+ if sample_rate != resample_rate:
180
+ if sample_rate < min_sample_rate:
181
+ continue
182
+ sample['sample_rate'] = resample_rate
183
+ sample['speech'] = torchaudio.transforms.Resample(
184
+ orig_freq=sample_rate, new_freq=resample_rate)(waveform)
185
+ max_val = sample['speech'].abs().max()
186
+ if max_val > 1:
187
+ sample['speech'] /= max_val
188
+ yield sample
189
+
190
+
191
+ def truncate(data, truncate_length=24576, mode='train'):
192
+ """ Truncate data.
193
+
194
+ Args:
195
+ data: Iterable[{key, wav, label, sample_rate}]
196
+ truncate_length: truncate length
197
+
198
+ Returns:
199
+ Iterable[{key, wav, label, sample_rate}]
200
+ """
201
+ for sample in data:
202
+ waveform = sample['audio']
203
+ if waveform.shape[1] > truncate_length:
204
+ start = random.randint(0, waveform.shape[1] - truncate_length)
205
+ waveform = waveform[:, start: start + truncate_length]
206
+ else:
207
+ waveform = torch.concat([waveform, torch.zeros(1, truncate_length -
208
+ waveform.shape[1])],
209
+ dim=1)
210
+ sample['audio'] = waveform
211
+ yield sample
212
+
213
+
214
+ def upsample(data, resample_rate=48000, min_sample_rate=16000, mode='train',
215
+ n_codebook=4):
216
+ """ Resample data.
217
+ Inplace operation.
218
+
219
+ Args:
220
+ data: Iterable[{key, wav, label, sample_rate}]
221
+ resample_rate: target resample rate
222
+
223
+ Returns:
224
+ Iterable[{key, wav, label, sample_rate}]
225
+ """
226
+ for sample in data:
227
+ assert 'semantic_token' in sample
228
+ # TODO: unify data processing key names
229
+ if 'acoustic_token' not in sample:
230
+ continue
231
+
232
+ if 'sample_rate' in sample.keys():
233
+ sample_rate = sample['sample_rate']
234
+ else:
235
+ sample_rate = 24000
236
+ token = np.array(sample['semantic_token'][0][:-1])
237
+
238
+ # Calculate the repetition factor for resampling
239
+ repetition_factor = int(n_codebook * resample_rate / sample_rate)
240
+ if sample_rate != resample_rate:
241
+ if sample_rate < min_sample_rate:
242
+ continue
243
+ sample['sample_rate'] = resample_rate
244
+ sample['semantic_token'] = np.array(
245
+ [np.repeat(token, repetition_factor)])
246
+
247
+ yield sample
248
+
249
+ def compute_fbank(data,
250
+ feat_extractor,
251
+ mode='train'):
252
+ """ Extract fbank
253
+
254
+ Args:
255
+ data: Iterable[{key, wav, label, sample_rate}]
256
+
257
+ Returns:
258
+ Iterable[{key, feat, label}]
259
+ """
260
+ for sample in data:
261
+ assert 'sample_rate' in sample
262
+ assert 'speech' in sample
263
+ assert 'utt' in sample
264
+ assert 'text_token' in sample
265
+ waveform = sample['speech']
266
+ mat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1)
267
+ sample['speech_feat'] = mat
268
+ del sample['speech']
269
+ yield sample
270
+
271
+
272
+ def parse_embedding(data, normalize, mode='train'):
273
+ """ Parse utt_embedding/spk_embedding
274
+
275
+ Args:
276
+ data: Iterable[{key, wav, label, sample_rate}]
277
+
278
+ Returns:
279
+ Iterable[{key, feat, label}]
280
+ """
281
+
282
+ for sample in data:
283
+ sample['utt_embedding'] = torch.tensor(sample['utt_embedding'],
284
+ dtype=torch.float32)
285
+ sample['spk_embedding'] = torch.tensor(sample['spk_embedding'],
286
+ dtype=torch.float32)
287
+ if normalize:
288
+ sample['utt_embedding'] = F.normalize(sample['utt_embedding'],
289
+ dim=0)
290
+ sample['spk_embedding'] = F.normalize(sample['spk_embedding'],
291
+ dim=0)
292
+ yield sample
293
+
294
+ def tokenize(data, get_tokenizer, allowed_special, mode='train'):
295
+ """ Decode text to chars or BPE
296
+ Inplace operation
297
+
298
+ Args:
299
+ data: Iterable[{key, wav, txt, sample_rate}]
300
+
301
+ Returns:
302
+ Iterable[{key, wav, txt, tokens, label, sample_rate}]
303
+ """
304
+ tokenizer = get_tokenizer()
305
+
306
+ for sample in data:
307
+ assert 'text' in sample
308
+ sample['text_token'] = tokenizer.encode(sample['text'],
309
+ allowed_special=allowed_special)
310
+ yield sample
311
+
312
+
313
+ def shuffle(data, shuffle_size=10000, mode='train'):
314
+ """ Local shuffle the data
315
+
316
+ Args:
317
+ data: Iterable[{key, feat, label}]
318
+ shuffle_size: buffer size for shuffle
319
+
320
+ Returns:
321
+ Iterable[{key, feat, label}]
322
+ """
323
+ buf = []
324
+ for sample in data:
325
+ buf.append(sample)
326
+ if len(buf) >= shuffle_size:
327
+ random.shuffle(buf)
328
+ for x in buf:
329
+ yield x
330
+ buf = []
331
+ # The sample left over
332
+ random.shuffle(buf)
333
+ for x in buf:
334
+ yield x
335
+
336
+
337
+ def sort(data, sort_size=500, mode='train'):
338
+ """ Sort the data by feature length.
339
+ Sort is used after shuffle and before batch, so we can group
340
+ utts with similar lengths into a batch, and `sort_size` should
341
+ be less than `shuffle_size`
342
+
343
+ Args:
344
+ data: Iterable[{key, feat, label}]
345
+ sort_size: buffer size for sort
346
+
347
+ Returns:
348
+ Iterable[{key, feat, label}]
349
+ """
350
+
351
+ buf = []
352
+ for sample in data:
353
+ if sample["chorus"] == "verse":
354
+ sample["chorus"] = "verse1"
355
+
356
+ if sample["acoustic_token"].shape[0] == 1:
357
+ sample["acoustic_token"] = np.concatenate(
358
+ sample["acoustic_token"][0])
359
+ else:
360
+ sample["acoustic_token"] = np.concatenate(sample["acoustic_token"])
361
+
362
+ sample["acoustic_token"] = torch.from_numpy(sample["acoustic_token"])
363
+ buf.append(sample)
364
+ if len(buf) >= sort_size:
365
+ buf.sort(key=lambda x: x['acoustic_token'].size(0))
366
+ for x in buf:
367
+ yield x
368
+ buf = []
369
+ # The sample left over
370
+ buf.sort(key=lambda x: x['acoustic_token'].size(0))
371
+ for x in buf:
372
+ yield x
373
+
374
+
375
+ def static_batch(data, batch_size=32):
376
+ """ Static batch the data by `batch_size`
377
+
378
+ Args:
379
+ data: Iterable[{key, feat, label}]
380
+ batch_size: batch size
381
+
382
+ Returns:
383
+ Iterable[List[{key, feat, label}]]
384
+ """
385
+ buf = []
386
+ data_empty = True
387
+ for sample in data:
388
+ data_empty = False
389
+ buf.append(sample)
390
+ if len(buf) >= batch_size:
391
+ yield buf
392
+ buf = []
393
+ if data_empty:
394
+ raise ValueError("data is empty")
395
+ if len(buf) > 0:
396
+ yield buf
397
+
398
+
399
+ def dynamic_batch(data, max_frames_in_batch=12000, mode='train'):
400
+ """ Dynamic batch the data until the total frames in batch
401
+ reach `max_frames_in_batch`
402
+
403
+ Args:
404
+ data: Iterable[{key, feat, label}]
405
+ max_frames_in_batch: max_frames in one batch
406
+
407
+ Returns:
408
+ Iterable[List[{key, feat, label}]]
409
+ """
410
+ buf = []
411
+ longest_frames = 0
412
+ for sample in data:
413
+ assert 'acoustic_token' in sample
414
+ assert isinstance(sample['acoustic_token'], torch.Tensor)
415
+
416
+ if 'semantic_token' in sample:
417
+ new_sample_frames = sample['semantic_token'][0].shape[0]
418
+ else:
419
+ new_sample_frames = sample['semantic_token']
420
+
421
+ if "text_token" in sample:
422
+ new_sample_frames += len(sample['text_token'])
423
+
424
+ longest_frames = max(longest_frames, new_sample_frames)
425
+ frames_after_padding = longest_frames * (len(buf) + 1)
426
+
427
+ if frames_after_padding > max_frames_in_batch:
428
+ if len(buf) > 0:
429
+ yield buf
430
+ buf = [sample]
431
+ longest_frames = new_sample_frames
432
+ else:
433
+ buf.append(sample)
434
+ if len(buf) > 0:
435
+ yield buf
436
+
437
+
438
+ def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000,
439
+ mode='train'):
440
+ """ Wrapper for static/dynamic batch
441
+ """
442
+ if mode == 'inference':
443
+ return static_batch(data, 1)
444
+ elif mode == 'processing':
445
+ return static_batch(data, batch_size)
446
+ else:
447
+ if batch_type == 'static':
448
+ return static_batch(data, batch_size)
449
+ elif batch_type == 'dynamic':
450
+ return dynamic_batch(data, max_frames_in_batch)
451
+ else:
452
+ logging.fatal('Unsupported batch type {}'.format(batch_type))
453
+
454
+
455
+ def padding(data, mode='train'):
456
+ """ Padding the data into training data
457
+
458
+ Args:
459
+ data: Iterable[List[{key, feat, label}]]
460
+
461
+ Returns:
462
+ Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
463
+ """
464
+ if mode == "train":
465
+ for sample in data:
466
+ assert isinstance(sample, list)
467
+ if len(sample) != 0:
468
+ acoustic_feat_len = torch.tensor(
469
+ [x['acoustic_token'].size(0) for x in sample],
470
+ dtype=torch.int32)
471
+ order = torch.argsort(acoustic_feat_len, descending=True)
472
+ utts = [sample[i]['utt'] for i in order]
473
+ acoustic_token = [
474
+ sample[i]['acoustic_token'].clone().to(torch.int32) for i in
475
+ order]
476
+ acoustic_token_len = torch.tensor(
477
+ [i.size(0) for i in acoustic_token], dtype=torch.int32)
478
+
479
+ acoustic_token = pad_sequence(acoustic_token,
480
+ batch_first=True,
481
+ padding_value=0)
482
+
483
+ text = [sample[i]['text'] for i in order]
484
+ text_token = [torch.tensor(sample[i]['text_token']).long() for i
485
+ in order]
486
+ text_token_len = torch.tensor([i.size(0) for i in text_token],
487
+ dtype=torch.int32)
488
+ text_token = pad_sequence(text_token, batch_first=True,
489
+ padding_value=0)
490
+ time_start = torch.tensor(
491
+ [sample[i]['time_start'] for i in order])
492
+ time_end = torch.tensor([sample[i]['time_end'] for i in order])
493
+
494
+ if isinstance(sample[0]['chorus'], str):
495
+ chorus = torch.tensor(
496
+ [CHORUS[sample[i]['chorus']] for i in order])
497
+ else:
498
+ chorus = [
499
+ torch.tensor([CHORUS[t] for t in sample[i]['chorus']])
500
+ for i in order]
501
+ chorus = pad_sequence(chorus, batch_first=True,
502
+ padding_value=-1)
503
+
504
+ batch = {
505
+ "utts" : utts,
506
+ "acoustic_token" : acoustic_token,
507
+ "acoustic_token_len": acoustic_token_len,
508
+ "time_start" : time_start,
509
+ "time_end" : time_end,
510
+ "chorus" : chorus,
511
+ "text" : text,
512
+ "text_token" : text_token,
513
+ "text_token_len" : text_token_len,
514
+ }
515
+
516
+ if "semantic_token" in sample[0]:
517
+ semantic_token = [
518
+ torch.tensor(sample[i]['semantic_token'][0],
519
+ dtype=torch.int32) for i in order]
520
+ semantic_token_len = torch.tensor(
521
+ [i.size(0) for i in semantic_token],
522
+ dtype=torch.int32)
523
+ semantic_token = pad_sequence(semantic_token,
524
+ batch_first=True,
525
+ padding_value=0)
526
+ batch.update({"semantic_token" : semantic_token,
527
+ "semantic_token_len": semantic_token_len})
528
+
529
+ yield batch
530
+ else:
531
+ logging.info("WARNING: sample is empty []!")
532
+
533
+ elif mode == "inference":
534
+ for sample in data:
535
+ assert isinstance(sample, list)
536
+ utts = [sample[i]['utt'] for i in range(len(sample))]
537
+ text = [sample[i]['text'] for i in range(len(sample))]
538
+ text_token = [torch.tensor(sample[i]['text_token']).long() for i in
539
+ range(len(sample))]
540
+ text_token_len = torch.tensor([i.size(0) for i in text_token],
541
+ dtype=torch.int32)
542
+ text_token = pad_sequence(text_token, batch_first=True,
543
+ padding_value=0)
544
+ time_start = torch.tensor(
545
+ [sample[i]['time_start'] for i in range(len(sample))])
546
+ time_end = torch.tensor(
547
+ [sample[i]['time_end'] for i in range(len(sample))])
548
+
549
+ if isinstance(sample[0]['chorus'], str):
550
+ chorus = torch.tensor([CHORUS[sample[i]['chorus']] for i in
551
+ range(len(sample))])
552
+ else:
553
+ chorus = [torch.tensor([CHORUS[t] for t in sample[i]['chorus']])
554
+ for i in range(len(sample))]
555
+ chorus = pad_sequence(chorus, batch_first=True,
556
+ padding_value=-1)
557
+
558
+ if "acoustic_token" in sample[0]:
559
+ acoustic_token = [
560
+ sample[i]['acoustic_token'].clone().to(torch.int32) for i in
561
+ range(len(sample))]
562
+ acoustic_token_len = torch.tensor(
563
+ [i.size(0) for i in acoustic_token], dtype=torch.int32)
564
+ acoustic_token = pad_sequence(acoustic_token,
565
+ batch_first=True,
566
+ padding_value=0)
567
+ else:
568
+ acoustic_token = None
569
+ acoustic_token_len = None
570
+
571
+ batch = {
572
+ "utts" : utts,
573
+ "acoustic_token" : acoustic_token,
574
+ "acoustic_token_len": acoustic_token_len,
575
+ "time_start" : time_start,
576
+ "time_end" : time_end,
577
+ "chorus" : chorus,
578
+ "text" : text,
579
+ "text_token" : text_token,
580
+ "text_token_len" : text_token_len,
581
+ }
582
+
583
+ if "semantic_token" in sample[0]:
584
+ semantic_token = [torch.tensor(sample[i]['semantic_token'][0],
585
+ dtype=torch.int32) for i in
586
+ range(len(sample))]
587
+ semantic_token_len = torch.tensor(
588
+ [i.size(0) for i in semantic_token], dtype=torch.int32)
589
+ semantic_token = pad_sequence(semantic_token,
590
+ batch_first=True,
591
+ padding_value=0)
592
+ batch.update({"semantic_token" : semantic_token,
593
+ "semantic_token_len": semantic_token_len})
594
+
595
+ yield batch
inspiremusic/flow/decoder.py ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import torch
15
+ import torch.nn as nn
16
+ from einops import pack, rearrange, repeat
17
+ from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D
18
+ from matcha.models.components.transformer import BasicTransformerBlock
19
+
20
+ class Transpose(torch.nn.Module):
21
+ def __init__(self, dim0: int, dim1: int):
22
+ super().__init__()
23
+ self.dim0 = dim0
24
+ self.dim1 = dim1
25
+
26
+ def forward(self, x: torch.Tensor):
27
+ x = torch.transpose(x, self.dim0, self.dim1)
28
+ return x
29
+
30
+ class CausalBlock1D(Block1D):
31
+ def __init__(self, dim: int, dim_out: int):
32
+ super(CausalBlock1D, self).__init__(dim, dim_out)
33
+ self.block = torch.nn.Sequential(
34
+ CausalConv1d(dim, dim_out, 3),
35
+ Transpose(1, 2),
36
+ nn.LayerNorm(dim_out),
37
+ Transpose(1, 2),
38
+ nn.Mish(),
39
+ )
40
+
41
+ def forward(self, x: torch.Tensor, mask: torch.Tensor):
42
+ output = self.block(x * mask)
43
+ return output * mask
44
+
45
+
46
+ class CausalResnetBlock1D(ResnetBlock1D):
47
+ def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8):
48
+ super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups)
49
+ self.block1 = CausalBlock1D(dim, dim_out)
50
+ self.block2 = CausalBlock1D(dim_out, dim_out)
51
+
52
+ class CausalConv1d(torch.nn.Conv1d):
53
+ def __init__(
54
+ self,
55
+ in_channels: int,
56
+ out_channels: int,
57
+ kernel_size: int,
58
+ stride: int = 1,
59
+ dilation: int = 1,
60
+ groups: int = 1,
61
+ bias: bool = True,
62
+ padding_mode: str = 'zeros',
63
+ device=None,
64
+ dtype=None
65
+ ) -> None:
66
+ super(CausalConv1d, self).__init__(in_channels, out_channels,
67
+ kernel_size, stride,
68
+ padding=0, dilation=dilation,
69
+ groups=groups, bias=bias,
70
+ padding_mode=padding_mode,
71
+ device=device, dtype=dtype)
72
+ assert stride == 1
73
+ self.causal_padding = (kernel_size - 1, 0)
74
+
75
+ def forward(self, x: torch.Tensor):
76
+ x = F.pad(x, self.causal_padding)
77
+ x = super(CausalConv1d, self).forward(x)
78
+ return x
79
+
80
+ class ConditionalDecoder(nn.Module):
81
+ def __init__(
82
+ self,
83
+ in_channels,
84
+ out_channels,
85
+ channels=(256, 256),
86
+ dropout=0.05,
87
+ attention_head_dim=64,
88
+ n_blocks=1,
89
+ num_mid_blocks=2,
90
+ num_heads=4,
91
+ act_fn="snake",
92
+ ):
93
+ """
94
+ This decoder requires an input with the same shape of the target. So, if your text content
95
+ is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
96
+ """
97
+ super().__init__()
98
+ channels = tuple(channels)
99
+ self.in_channels = in_channels
100
+ self.out_channels = out_channels
101
+
102
+ self.time_embeddings = SinusoidalPosEmb(in_channels)
103
+ time_embed_dim = channels[0] * 4
104
+ self.time_mlp = TimestepEmbedding(
105
+ in_channels=in_channels,
106
+ time_embed_dim=time_embed_dim,
107
+ act_fn="silu",
108
+ )
109
+ self.down_blocks = nn.ModuleList([])
110
+ self.mid_blocks = nn.ModuleList([])
111
+ self.up_blocks = nn.ModuleList([])
112
+
113
+ output_channel = in_channels
114
+ for i in range(len(channels)): # pylint: disable=consider-using-enumerate
115
+ input_channel = output_channel
116
+ output_channel = channels[i]
117
+ is_last = i == len(channels) - 1
118
+ resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
119
+ transformer_blocks = nn.ModuleList(
120
+ [
121
+ BasicTransformerBlock(
122
+ dim=output_channel,
123
+ num_attention_heads=num_heads,
124
+ attention_head_dim=attention_head_dim,
125
+ dropout=dropout,
126
+ activation_fn=act_fn,
127
+ )
128
+ for _ in range(n_blocks)
129
+ ]
130
+ )
131
+ downsample = (
132
+ Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
133
+ )
134
+ self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
135
+
136
+ for _ in range(num_mid_blocks):
137
+ input_channel = channels[-1]
138
+ out_channels = channels[-1]
139
+ resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
140
+
141
+ transformer_blocks = nn.ModuleList(
142
+ [
143
+ BasicTransformerBlock(
144
+ dim=output_channel,
145
+ num_attention_heads=num_heads,
146
+ attention_head_dim=attention_head_dim,
147
+ dropout=dropout,
148
+ activation_fn=act_fn,
149
+ )
150
+ for _ in range(n_blocks)
151
+ ]
152
+ )
153
+
154
+ self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
155
+
156
+ channels = channels[::-1] + (channels[0],)
157
+ for i in range(len(channels) - 1):
158
+ input_channel = channels[i] * 2
159
+ output_channel = channels[i + 1]
160
+ is_last = i == len(channels) - 2
161
+ resnet = ResnetBlock1D(
162
+ dim=input_channel,
163
+ dim_out=output_channel,
164
+ time_emb_dim=time_embed_dim,
165
+ )
166
+ transformer_blocks = nn.ModuleList(
167
+ [
168
+ BasicTransformerBlock(
169
+ dim=output_channel,
170
+ num_attention_heads=num_heads,
171
+ attention_head_dim=attention_head_dim,
172
+ dropout=dropout,
173
+ activation_fn=act_fn,
174
+ )
175
+ for _ in range(n_blocks)
176
+ ]
177
+ )
178
+ upsample = (
179
+ Upsample1D(output_channel, use_conv_transpose=True)
180
+ if not is_last
181
+ else nn.Conv1d(output_channel, output_channel, 3, padding=1)
182
+ )
183
+ self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
184
+ self.final_block = Block1D(channels[-1], channels[-1])
185
+ self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
186
+ self.initialize_weights()
187
+
188
+ def initialize_weights(self):
189
+ for m in self.modules():
190
+ if isinstance(m, nn.Conv1d):
191
+ nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
192
+ if m.bias is not None:
193
+ nn.init.constant_(m.bias, 0)
194
+ elif isinstance(m, nn.GroupNorm):
195
+ nn.init.constant_(m.weight, 1)
196
+ nn.init.constant_(m.bias, 0)
197
+ elif isinstance(m, nn.Linear):
198
+ nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
199
+ if m.bias is not None:
200
+ nn.init.constant_(m.bias, 0)
201
+
202
+ def forward(self, x, mask, mu, t, spks=None, cond=None):
203
+ """Forward pass of the UNet1DConditional model.
204
+
205
+ Args:
206
+ x (torch.Tensor): shape (batch_size, in_channels, time)
207
+ mask (_type_): shape (batch_size, 1, time)
208
+ t (_type_): shape (batch_size)
209
+ spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
210
+ cond (_type_, optional): placeholder for future use. Defaults to None.
211
+
212
+ Raises:
213
+ ValueError: _description_
214
+ ValueError: _description_
215
+
216
+ Returns:
217
+ _type_: _description_
218
+ """
219
+
220
+ t = self.time_embeddings(t).to(t.dtype)
221
+ t = self.time_mlp(t)
222
+ x = pack([x, mu], "b * t")[0]
223
+ if spks is not None:
224
+ spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
225
+ x = pack([x, spks], "b * t")[0]
226
+ if cond is not None:
227
+ x = pack([x, cond], "b * t")[0]
228
+ hiddens = []
229
+ masks = [mask]
230
+ for resnet, transformer_blocks, downsample in self.down_blocks:
231
+ mask_down = masks[-1]
232
+ x = resnet(x, mask_down, t)
233
+ x = rearrange(x, "b c t -> b t c").contiguous()
234
+ attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
235
+ for transformer_block in transformer_blocks:
236
+ x = transformer_block(
237
+ hidden_states=x,
238
+ attention_mask=attn_mask,
239
+ timestep=t,
240
+ )
241
+ x = rearrange(x, "b t c -> b c t").contiguous()
242
+ hiddens.append(x) # Save hidden states for skip connections
243
+ x = downsample(x * mask_down)
244
+ masks.append(mask_down[:, :, ::2])
245
+ masks = masks[:-1]
246
+ mask_mid = masks[-1]
247
+
248
+ for resnet, transformer_blocks in self.mid_blocks:
249
+ x = resnet(x, mask_mid, t)
250
+ x = rearrange(x, "b c t -> b t c").contiguous()
251
+ attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
252
+ for transformer_block in transformer_blocks:
253
+ x = transformer_block(
254
+ hidden_states=x,
255
+ attention_mask=attn_mask,
256
+ timestep=t,
257
+ )
258
+ x = rearrange(x, "b t c -> b c t").contiguous()
259
+
260
+ for resnet, transformer_blocks, upsample in self.up_blocks:
261
+ mask_up = masks.pop()
262
+ skip = hiddens.pop()
263
+ x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
264
+ x = resnet(x, mask_up, t)
265
+ x = rearrange(x, "b c t -> b t c").contiguous()
266
+ attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
267
+ for transformer_block in transformer_blocks:
268
+ x = transformer_block(
269
+ hidden_states=x,
270
+ attention_mask=attn_mask,
271
+ timestep=t,
272
+ )
273
+ x = rearrange(x, "b t c -> b c t").contiguous()
274
+ x = upsample(x * mask_up)
275
+ x = self.final_block(x, mask_up)
276
+ output = self.final_proj(x * mask_up)
277
+ return output * mask
inspiremusic/flow/flow.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import logging
15
+ import random
16
+ from typing import Dict, Optional
17
+ import torch
18
+ import torch.nn as nn
19
+ from torch.nn import functional as F
20
+ from omegaconf import DictConfig
21
+ from inspiremusic.utils.mask import make_pad_mask
22
+ from inspiremusic.music_tokenizer.vqvae import VQVAE
23
+
24
+ class MaskedDiff(torch.nn.Module):
25
+ def __init__(self,
26
+ input_size: int = 512,
27
+ output_size: int = 128,
28
+ output_type: str = "mel",
29
+ vocab_size: int = 4096,
30
+ input_frame_rate: int = 50,
31
+ only_mask_loss: bool = True,
32
+ encoder: torch.nn.Module = None,
33
+ length_regulator: torch.nn.Module = None,
34
+ decoder: torch.nn.Module = None,
35
+ decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80,
36
+ 'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
37
+ 'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
38
+ 'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
39
+ 'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
40
+ mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 128, 'sampling_rate': 48000,
41
+ 'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 48000},
42
+ generator_model_dir: str = "../../pretrained_models/InspireMusic-Base/music_tokenizer",
43
+ num_codebooks: int = 4
44
+ ):
45
+ super().__init__()
46
+ self.input_size = input_size
47
+ self.output_size = output_size
48
+ self.decoder_conf = decoder_conf
49
+ self.mel_feat_conf = mel_feat_conf
50
+ self.vocab_size = vocab_size
51
+ self.output_type = output_type
52
+ self.input_frame_rate = input_frame_rate
53
+ logging.info(f"input frame rate={self.input_frame_rate}")
54
+ self.input_embedding = nn.Embedding(vocab_size, input_size)
55
+
56
+ self.encoder = encoder
57
+ self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
58
+ self.decoder = decoder
59
+ self.length_regulator = length_regulator
60
+ self.only_mask_loss = only_mask_loss
61
+ self.quantizer = VQVAE( f'{generator_model_dir}/config.json',
62
+ f'{generator_model_dir}/model.pt',with_encoder=True).quantizer
63
+ self.quantizer.eval()
64
+ self.num_codebooks = num_codebooks
65
+ self.cond = None
66
+ self.interpolate = False
67
+
68
+ def forward(
69
+ self,
70
+ batch: dict,
71
+ device: torch.device,
72
+ ) -> Dict[str, Optional[torch.Tensor]]:
73
+
74
+ audio_token = batch['acoustic_token'].to(device)
75
+ audio_token_len = batch['acoustic_token_len'].to(device)
76
+ audio_token = audio_token.view(audio_token.size(0),-1,self.num_codebooks)
77
+ if "semantic_token" not in batch:
78
+ token = audio_token[:,:,0]
79
+ token_len = (audio_token_len/self.num_codebooks).long()
80
+
81
+ else:
82
+ token = batch['semantic_token'].to(device)
83
+ token_len = batch['semantic_token_len'].to(device)
84
+
85
+ with torch.no_grad():
86
+ feat = self.quantizer.embed(audio_token)
87
+ feat_len = (audio_token_len/self.num_codebooks).long()
88
+
89
+ token = self.input_embedding(token)
90
+ h, h_lengths = self.encoder(token, token_len)
91
+ h, h_lengths = self.length_regulator(h, feat_len)
92
+
93
+ # get conditions
94
+ if self.cond:
95
+ conds = torch.zeros(feat.shape, device=token.device)
96
+ for i, j in enumerate(feat_len):
97
+ if random.random() < 0.5:
98
+ continue
99
+ index = random.randint(0, int(0.3 * j))
100
+ conds[i, :index] = feat[i, :index]
101
+ conds = conds.transpose(1, 2)
102
+ else:
103
+ conds = None
104
+
105
+ mask = (~make_pad_mask(feat_len)).to(h)
106
+
107
+ loss, _ = self.decoder.compute_loss(
108
+ feat,
109
+ mask.unsqueeze(1),
110
+ h.transpose(1, 2).contiguous(),
111
+ None,
112
+ cond=conds
113
+ )
114
+
115
+ return {'loss': loss}
116
+
117
+ @torch.inference_mode()
118
+ def inference(self,
119
+ token,
120
+ token_len,
121
+ sample_rate):
122
+ assert token.shape[0] == 1
123
+
124
+ token = self.input_embedding(torch.clamp(token, min=0))
125
+ h, h_lengths = self.encoder(token, token_len)
126
+
127
+ if sample_rate == 48000:
128
+ token_len = 2 * token_len
129
+
130
+ h, h_lengths = self.length_regulator(h, token_len)
131
+
132
+ # get conditions
133
+ conds = None
134
+
135
+ mask = (~make_pad_mask(token_len)).to(h)
136
+ feat = self.decoder(
137
+ mu=h.transpose(1, 2).contiguous(),
138
+ mask=mask.unsqueeze(1),
139
+ spks=None,
140
+ cond=conds,
141
+ n_timesteps=10
142
+ )
143
+ return feat
inspiremusic/flow/flow_matching.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import torch
15
+ import torch.nn.functional as F
16
+ from matcha.models.components.flow_matching import BASECFM
17
+
18
+
19
+ class ConditionalCFM(BASECFM):
20
+ def __init__(self, in_channels, cfm_params, estimator: torch.nn.Module = None):
21
+ super().__init__(
22
+ n_feats=in_channels,
23
+ cfm_params=cfm_params,
24
+ )
25
+ self.t_scheduler = cfm_params.t_scheduler
26
+ self.training_cfg_rate = cfm_params.training_cfg_rate
27
+ self.inference_cfg_rate = cfm_params.inference_cfg_rate
28
+ # Just change the architecture of the estimator here
29
+ self.estimator = estimator
30
+
31
+ @torch.inference_mode()
32
+ def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
33
+ """Forward diffusion
34
+
35
+ Args:
36
+ mu (torch.Tensor): output of encoder
37
+ shape: (batch_size, n_feats, mel_timesteps)
38
+ mask (torch.Tensor): output_mask
39
+ shape: (batch_size, 1, mel_timesteps)
40
+ n_timesteps (int): number of diffusion steps
41
+ temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
42
+ spks (torch.Tensor, optional): speaker ids. Defaults to None.
43
+ shape: (batch_size, spk_emb_dim)
44
+ cond: Not used but kept for future purposes
45
+
46
+ Returns:
47
+ sample: generated mel-spectrogram
48
+ shape: (batch_size, n_feats, mel_timesteps)
49
+ """
50
+ z = torch.randn_like(mu) * temperature
51
+ t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
52
+ if self.t_scheduler == 'cosine':
53
+ t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
54
+ return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
55
+
56
+ def solve_euler(self, x, t_span, mu, mask, spks, cond):
57
+ """
58
+ Fixed euler solver for ODEs.
59
+ Args:
60
+ x (torch.Tensor): random noise
61
+ t_span (torch.Tensor): n_timesteps interpolated
62
+ shape: (n_timesteps + 1,)
63
+ mu (torch.Tensor): output of encoder
64
+ shape: (batch_size, n_feats, mel_timesteps)
65
+ mask (torch.Tensor): output_mask
66
+ shape: (batch_size, 1, mel_timesteps)
67
+ spks (torch.Tensor, optional): speaker ids. Defaults to None.
68
+ shape: (batch_size, spk_emb_dim)
69
+ cond: Not used but kept for future purposes
70
+ """
71
+ t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
72
+ t = t.unsqueeze(dim=0)
73
+
74
+ # I am storing this because I can later plot it by putting a debugger here and saving it to a file
75
+ # Or in future might add like a return_all_steps flag
76
+ sol = []
77
+
78
+ for step in range(1, len(t_span)):
79
+ dphi_dt = self.forward_estimator(x, mask, mu, t, spks, cond)
80
+ # Classifier-Free Guidance inference introduced in VoiceBox
81
+ if self.inference_cfg_rate > 0:
82
+ cfg_dphi_dt = self.forward_estimator(
83
+ x, mask,
84
+ torch.zeros_like(mu), t,
85
+ torch.zeros_like(spks) if spks is not None else None,
86
+ torch.zeros_like(cond) if cond is not None else None
87
+ )
88
+ dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt -
89
+ self.inference_cfg_rate * cfg_dphi_dt)
90
+ x = x + dt * dphi_dt
91
+ t = t + dt
92
+ sol.append(x)
93
+ if step < len(t_span) - 1:
94
+ dt = t_span[step + 1] - t
95
+
96
+ return sol[-1]
97
+
98
+ def forward_estimator(self, x, mask, mu, t, spks, cond):
99
+ if isinstance(self.estimator, torch.nn.Module):
100
+ return self.estimator.forward(x, mask, mu, t, spks, cond)
101
+ elif isinstance(self.estimator, onnxruntime.InferenceSession):
102
+ ort_inputs = {
103
+ 'x': x.cpu().numpy(),
104
+ 'mask': mask.cpu().numpy(),
105
+ 'mu': mu.cpu().numpy(),
106
+ 't': t.cpu().numpy(),
107
+ 'spks': spks.cpu().numpy(),
108
+ 'cond': cond.cpu().numpy()
109
+ }
110
+ output = self.estimator.run(None, ort_inputs)[0]
111
+ return torch.tensor(output, dtype=x.dtype, device=x.device)
112
+ else:
113
+ self.estimator.set_input_shape('x', (2, 80, x.size(2)))
114
+ self.estimator.set_input_shape('mask', (2, 1, x.size(2)))
115
+ self.estimator.set_input_shape('mu', (2, 80, x.size(2)))
116
+ self.estimator.set_input_shape('t', (2,))
117
+ self.estimator.set_input_shape('spks', (2, 80))
118
+ self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
119
+ # run trt engine
120
+ self.estimator.execute_v2([x.contiguous().data_ptr(),
121
+ mask.contiguous().data_ptr(),
122
+ mu.contiguous().data_ptr(),
123
+ t.contiguous().data_ptr(),
124
+ spks.contiguous().data_ptr(),
125
+ cond.contiguous().data_ptr(),
126
+ x.data_ptr()])
127
+ return x
128
+
129
+ def compute_loss(self, x1, mask, mu, spks=None, cond=None):
130
+ """Computes diffusion loss
131
+
132
+ Args:
133
+ x1 (torch.Tensor): Target
134
+ shape: (batch_size, n_feats, mo)
135
+ mask (torch.Tensor): target mask
136
+ shape: (batch_size, 1, mel_timesteps)
137
+ mu (torch.Tensor): output of encoder
138
+ shape: (batch_size, n_feats, mel_timesteps)
139
+ spks (torch.Tensor, optional): speaker embedding. Defaults to None.
140
+ shape: (batch_size, spk_emb_dim)
141
+
142
+ Returns:
143
+ loss: conditional flow matching loss
144
+ y: conditional flow
145
+ shape: (batch_size, n_feats, mel_timesteps)
146
+ """
147
+ b, _, t = mu.shape
148
+
149
+ t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
150
+ if self.t_scheduler == 'cosine':
151
+ t = 1 - torch.cos(t * 0.5 * torch.pi)
152
+
153
+ z = torch.randn_like(x1)
154
+ y = (1 - (1 - self.sigma_min) * t) * z + t * x1
155
+ u = x1 - (1 - self.sigma_min) * z
156
+
157
+ # during training, we randomly drop condition to trade off mode coverage and sample fidelity
158
+ if self.training_cfg_rate > 0:
159
+ cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate
160
+ mu = mu * cfg_mask.view(-1, 1, 1)
161
+ if cond is not None:
162
+ cond = cond * cfg_mask.view(-1, 1, 1)
163
+
164
+ pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
165
+ loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
166
+ return loss, y
167
+
inspiremusic/flow/length_regulator.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import Tuple
15
+ import torch.nn as nn
16
+ import torch
17
+ from torch.nn import functional as F
18
+ from inspiremusic.utils.mask import make_pad_mask
19
+
20
+
21
+ class InterpolateRegulator(nn.Module):
22
+ def __init__(
23
+ self,
24
+ channels: int,
25
+ sampling_ratios: Tuple,
26
+ out_channels: int = None,
27
+ groups: int = 1,
28
+ ):
29
+ super().__init__()
30
+ self.sampling_ratios = sampling_ratios
31
+ out_channels = out_channels or channels
32
+ model = nn.ModuleList([])
33
+ if len(sampling_ratios) > 0:
34
+ for _ in sampling_ratios:
35
+ module = nn.Conv1d(channels, channels, 3, 1, 1)
36
+ norm = nn.GroupNorm(groups, channels)
37
+ act = nn.Mish()
38
+ model.extend([module, norm, act])
39
+ model.append(
40
+ nn.Conv1d(channels, out_channels, 1, 1)
41
+ )
42
+ self.model = nn.Sequential(*model)
43
+
44
+ def forward(self, x, ylens=None):
45
+ # x in (B, T, D)
46
+ mask = (~make_pad_mask(ylens)).to(x).unsqueeze(-1)
47
+ x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='linear')
48
+ out = self.model(x).transpose(1, 2).contiguous()
49
+ olens = ylens
50
+ return out * mask, olens
51
+
52
+ def inference(self, x1, x2, mel_len1, mel_len2, input_frame_rate=50):
53
+ # in inference mode, interploate prompt token and token(head/mid/tail) seprately, so we can get a clear separation point of mel
54
+ # x in (B, T, D)
55
+ if x2.shape[1] > 40:
56
+ x2_head = F.interpolate(x2[:, :20].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
57
+ x2_mid = F.interpolate(x2[:, 20:-20].transpose(1, 2).contiguous(), size=mel_len2 - int(20 / input_frame_rate * 22050 / 256) * 2,
58
+ mode='linear')
59
+ x2_tail = F.interpolate(x2[:, -20:].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
60
+ x2 = torch.concat([x2_head, x2_mid, x2_tail], dim=2)
61
+ else:
62
+ x2 = F.interpolate(x2.transpose(1, 2).contiguous(), size=mel_len2, mode='linear')
63
+ if x1.shape[1] != 0:
64
+ x1 = F.interpolate(x1.transpose(1, 2).contiguous(), size=mel_len1, mode='linear')
65
+ x = torch.concat([x1, x2], dim=2)
66
+ else:
67
+ x = x2
68
+ out = self.model(x).transpose(1, 2).contiguous()
69
+ return out, mel_len1 + mel_len2
inspiremusic/hifigan/discriminator.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torch.nn.utils import weight_norm
4
+ from typing import List, Optional, Tuple
5
+ from einops import rearrange
6
+ from torchaudio.transforms import Spectrogram
7
+
8
+
9
+ class MultipleDiscriminator(nn.Module):
10
+ def __init__(
11
+ self, mpd: nn.Module, mrd: nn.Module
12
+ ):
13
+ super().__init__()
14
+ self.mpd = mpd
15
+ self.mrd = mrd
16
+
17
+ def forward(self, y: torch.Tensor, y_hat: torch.Tensor):
18
+ y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], []
19
+ this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mpd(y.unsqueeze(dim=1), y_hat.unsqueeze(dim=1))
20
+ y_d_rs += this_y_d_rs
21
+ y_d_gs += this_y_d_gs
22
+ fmap_rs += this_fmap_rs
23
+ fmap_gs += this_fmap_gs
24
+ this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mrd(y, y_hat)
25
+ y_d_rs += this_y_d_rs
26
+ y_d_gs += this_y_d_gs
27
+ fmap_rs += this_fmap_rs
28
+ fmap_gs += this_fmap_gs
29
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
30
+
31
+
32
+ class MultiResolutionDiscriminator(nn.Module):
33
+ def __init__(
34
+ self,
35
+ fft_sizes: Tuple[int, ...] = (2048, 1024, 512),
36
+ num_embeddings: Optional[int] = None,
37
+ ):
38
+ """
39
+ Multi-Resolution Discriminator module adapted from https://github.com/descriptinc/descript-audio-codec.
40
+ Additionally, it allows incorporating conditional information with a learned embeddings table.
41
+
42
+ Args:
43
+ fft_sizes (tuple[int]): Tuple of window lengths for FFT. Defaults to (2048, 1024, 512).
44
+ num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator.
45
+ Defaults to None.
46
+ """
47
+
48
+ super().__init__()
49
+ self.discriminators = nn.ModuleList(
50
+ [DiscriminatorR(window_length=w, num_embeddings=num_embeddings) for w in fft_sizes]
51
+ )
52
+
53
+ def forward(
54
+ self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None
55
+ ) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
56
+ y_d_rs = []
57
+ y_d_gs = []
58
+ fmap_rs = []
59
+ fmap_gs = []
60
+
61
+ for d in self.discriminators:
62
+ y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
63
+ y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
64
+ y_d_rs.append(y_d_r)
65
+ fmap_rs.append(fmap_r)
66
+ y_d_gs.append(y_d_g)
67
+ fmap_gs.append(fmap_g)
68
+
69
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
70
+
71
+
72
+ class DiscriminatorR(nn.Module):
73
+ def __init__(
74
+ self,
75
+ window_length: int,
76
+ num_embeddings: Optional[int] = None,
77
+ channels: int = 32,
78
+ hop_factor: float = 0.25,
79
+ bands: Tuple[Tuple[float, float], ...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)),
80
+ ):
81
+ super().__init__()
82
+ self.window_length = window_length
83
+ self.hop_factor = hop_factor
84
+ self.spec_fn = Spectrogram(
85
+ n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None
86
+ )
87
+ n_fft = window_length // 2 + 1
88
+ bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
89
+ self.bands = bands
90
+ convs = lambda: nn.ModuleList(
91
+ [
92
+ weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))),
93
+ weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
94
+ weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
95
+ weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
96
+ weight_norm(nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))),
97
+ ]
98
+ )
99
+ self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
100
+
101
+ if num_embeddings is not None:
102
+ self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels)
103
+ torch.nn.init.zeros_(self.emb.weight)
104
+
105
+ self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1)))
106
+
107
+ def spectrogram(self, x):
108
+ # Remove DC offset
109
+ x = x - x.mean(dim=-1, keepdims=True)
110
+ # Peak normalize the volume of input audio
111
+ x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
112
+ x = self.spec_fn(x)
113
+ x = torch.view_as_real(x)
114
+ x = rearrange(x, "b f t c -> b c t f")
115
+ # Split into bands
116
+ x_bands = [x[..., b[0]: b[1]] for b in self.bands]
117
+ return x_bands
118
+
119
+ def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None):
120
+ x_bands = self.spectrogram(x)
121
+ fmap = []
122
+ x = []
123
+ for band, stack in zip(x_bands, self.band_convs):
124
+ for i, layer in enumerate(stack):
125
+ band = layer(band)
126
+ band = torch.nn.functional.leaky_relu(band, 0.1)
127
+ if i > 0:
128
+ fmap.append(band)
129
+ x.append(band)
130
+ x = torch.cat(x, dim=-1)
131
+ if cond_embedding_id is not None:
132
+ emb = self.emb(cond_embedding_id)
133
+ h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
134
+ else:
135
+ h = 0
136
+ x = self.conv_post(x)
137
+ fmap.append(x)
138
+ x += h
139
+
140
+ return x, fmap
inspiremusic/hifigan/f0_predictor.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import torch
15
+ import torch.nn as nn
16
+ from torch.nn.utils import weight_norm
17
+
18
+
19
+ class ConvRNNF0Predictor(nn.Module):
20
+ def __init__(self,
21
+ num_class: int = 1,
22
+ in_channels: int = 80,
23
+ cond_channels: int = 512
24
+ ):
25
+ super().__init__()
26
+
27
+ self.num_class = num_class
28
+ self.condnet = nn.Sequential(
29
+ weight_norm(
30
+ nn.Conv1d(in_channels, cond_channels, kernel_size=3, padding=1)
31
+ ),
32
+ nn.ELU(),
33
+ weight_norm(
34
+ nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
35
+ ),
36
+ nn.ELU(),
37
+ weight_norm(
38
+ nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
39
+ ),
40
+ nn.ELU(),
41
+ weight_norm(
42
+ nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
43
+ ),
44
+ nn.ELU(),
45
+ weight_norm(
46
+ nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
47
+ ),
48
+ nn.ELU(),
49
+ )
50
+ self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class)
51
+
52
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
53
+ x = self.condnet(x)
54
+ x = x.transpose(1, 2)
55
+ return torch.abs(self.classifier(x).squeeze(-1))
inspiremusic/hifigan/generator.py ADDED
@@ -0,0 +1,411 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """HIFI-GAN"""
16
+
17
+ from typing import Dict, Optional, List
18
+ import numpy as np
19
+ from scipy.signal import get_window
20
+ import torch
21
+ import torch.nn as nn
22
+ import torch.nn.functional as F
23
+ from torch.nn import Conv1d
24
+ from torch.nn import ConvTranspose1d
25
+ from torch.nn.utils import remove_weight_norm
26
+ from torch.nn.utils import weight_norm
27
+ from torch.distributions.uniform import Uniform
28
+
29
+ from inspiremusic.transformer.activation import Snake
30
+ from inspiremusic.utils.common import get_padding
31
+ from inspiremusic.utils.common import init_weights
32
+
33
+
34
+ """hifigan based generator implementation.
35
+
36
+ This code is modified from https://github.com/jik876/hifi-gan
37
+ ,https://github.com/kan-bayashi/ParallelWaveGAN and
38
+ https://github.com/NVIDIA/BigVGAN
39
+
40
+ """
41
+
42
+
43
+ class ResBlock(torch.nn.Module):
44
+ """Residual block module in HiFiGAN/BigVGAN."""
45
+ def __init__(
46
+ self,
47
+ channels: int = 512,
48
+ kernel_size: int = 3,
49
+ dilations: List[int] = [1, 3, 5],
50
+ ):
51
+ super(ResBlock, self).__init__()
52
+ self.convs1 = nn.ModuleList()
53
+ self.convs2 = nn.ModuleList()
54
+
55
+ for dilation in dilations:
56
+ self.convs1.append(
57
+ weight_norm(
58
+ Conv1d(
59
+ channels,
60
+ channels,
61
+ kernel_size,
62
+ 1,
63
+ dilation=dilation,
64
+ padding=get_padding(kernel_size, dilation)
65
+ )
66
+ )
67
+ )
68
+ self.convs2.append(
69
+ weight_norm(
70
+ Conv1d(
71
+ channels,
72
+ channels,
73
+ kernel_size,
74
+ 1,
75
+ dilation=1,
76
+ padding=get_padding(kernel_size, 1)
77
+ )
78
+ )
79
+ )
80
+ self.convs1.apply(init_weights)
81
+ self.convs2.apply(init_weights)
82
+ self.activations1 = nn.ModuleList([
83
+ Snake(channels, alpha_logscale=False)
84
+ for _ in range(len(self.convs1))
85
+ ])
86
+ self.activations2 = nn.ModuleList([
87
+ Snake(channels, alpha_logscale=False)
88
+ for _ in range(len(self.convs2))
89
+ ])
90
+
91
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
92
+ for idx in range(len(self.convs1)):
93
+ xt = self.activations1[idx](x)
94
+ xt = self.convs1[idx](xt)
95
+ xt = self.activations2[idx](xt)
96
+ xt = self.convs2[idx](xt)
97
+ x = xt + x
98
+ return x
99
+
100
+ def remove_weight_norm(self):
101
+ for idx in range(len(self.convs1)):
102
+ remove_weight_norm(self.convs1[idx])
103
+ remove_weight_norm(self.convs2[idx])
104
+
105
+
106
+ class SineGen(torch.nn.Module):
107
+ """ Definition of sine generator
108
+ SineGen(samp_rate, harmonic_num = 0,
109
+ sine_amp = 0.1, noise_std = 0.003,
110
+ voiced_threshold = 0,
111
+ flag_for_pulse=False)
112
+ samp_rate: sampling rate in Hz
113
+ harmonic_num: number of harmonic overtones (default 0)
114
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
115
+ noise_std: std of Gaussian noise (default 0.003)
116
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
117
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
118
+ Note: when flag_for_pulse is True, the first time step of a voiced
119
+ segment is always sin(np.pi) or cos(0)
120
+ """
121
+
122
+ def __init__(self, samp_rate, harmonic_num=0,
123
+ sine_amp=0.1, noise_std=0.003,
124
+ voiced_threshold=0):
125
+ super(SineGen, self).__init__()
126
+ self.sine_amp = sine_amp
127
+ self.noise_std = noise_std
128
+ self.harmonic_num = harmonic_num
129
+ self.sampling_rate = samp_rate
130
+ self.voiced_threshold = voiced_threshold
131
+
132
+ def _f02uv(self, f0):
133
+ # generate uv signal
134
+ uv = (f0 > self.voiced_threshold).type(torch.float32)
135
+ return uv
136
+
137
+ @torch.no_grad()
138
+ def forward(self, f0):
139
+ """
140
+ :param f0: [B, 1, sample_len], Hz
141
+ :return: [B, 1, sample_len]
142
+ """
143
+
144
+ F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
145
+ for i in range(self.harmonic_num + 1):
146
+ F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate
147
+
148
+ theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1)
149
+ u_dist = Uniform(low=-np.pi, high=np.pi)
150
+ phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device)
151
+ phase_vec[:, 0, :] = 0
152
+
153
+ # generate sine waveforms
154
+ sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec)
155
+
156
+ # generate uv signal
157
+ uv = self._f02uv(f0)
158
+
159
+ # noise: for unvoiced should be similar to sine_amp
160
+ # std = self.sine_amp/3 -> max value ~ self.sine_amp
161
+ # . for voiced regions is self.noise_std
162
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
163
+ noise = noise_amp * torch.randn_like(sine_waves)
164
+
165
+ # first: set the unvoiced part to 0 by uv
166
+ # then: additive noise
167
+ sine_waves = sine_waves * uv + noise
168
+ return sine_waves, uv, noise
169
+
170
+
171
+ class SourceModuleHnNSF(torch.nn.Module):
172
+ """ SourceModule for hn-nsf
173
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
174
+ add_noise_std=0.003, voiced_threshod=0)
175
+ sampling_rate: sampling_rate in Hz
176
+ harmonic_num: number of harmonic above F0 (default: 0)
177
+ sine_amp: amplitude of sine source signal (default: 0.1)
178
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
179
+ note that amplitude of noise in unvoiced is decided
180
+ by sine_amp
181
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
182
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
183
+ F0_sampled (batchsize, length, 1)
184
+ Sine_source (batchsize, length, 1)
185
+ noise_source (batchsize, length 1)
186
+ uv (batchsize, length, 1)
187
+ """
188
+
189
+ def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
190
+ add_noise_std=0.003, voiced_threshod=0):
191
+ super(SourceModuleHnNSF, self).__init__()
192
+
193
+ self.sine_amp = sine_amp
194
+ self.noise_std = add_noise_std
195
+
196
+ # to produce sine waveforms
197
+ self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
198
+ sine_amp, add_noise_std, voiced_threshod)
199
+
200
+ # to merge source harmonics into a single excitation
201
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
202
+ self.l_tanh = torch.nn.Tanh()
203
+
204
+ def forward(self, x):
205
+ """
206
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
207
+ F0_sampled (batchsize, length, 1)
208
+ Sine_source (batchsize, length, 1)
209
+ noise_source (batchsize, length 1)
210
+ """
211
+ # source for harmonic branch
212
+ with torch.no_grad():
213
+ sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2))
214
+ sine_wavs = sine_wavs.transpose(1, 2)
215
+ uv = uv.transpose(1, 2)
216
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
217
+
218
+ # source for noise branch, in the same shape as uv
219
+ noise = torch.randn_like(uv) * self.sine_amp / 3
220
+ return sine_merge, noise, uv
221
+
222
+
223
+ class HiFTGenerator(nn.Module):
224
+ """
225
+ HiFTNet Generator: Neural Source Filter + ISTFTNet
226
+ https://arxiv.org/abs/2309.09493
227
+ """
228
+ def __init__(
229
+ self,
230
+ in_channels: int = 80,
231
+ base_channels: int = 512,
232
+ nb_harmonics: int = 8,
233
+ sampling_rate: int = 22050,
234
+ nsf_alpha: float = 0.1,
235
+ nsf_sigma: float = 0.003,
236
+ nsf_voiced_threshold: float = 10,
237
+ upsample_rates: List[int] = [8, 8],
238
+ upsample_kernel_sizes: List[int] = [16, 16],
239
+ istft_params: Dict[str, int] = {"n_fft": 16, "hop_len": 4},
240
+ resblock_kernel_sizes: List[int] = [3, 7, 11],
241
+ resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
242
+ source_resblock_kernel_sizes: List[int] = [7, 11],
243
+ source_resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5]],
244
+ lrelu_slope: float = 0.1,
245
+ audio_limit: float = 0.99,
246
+ f0_predictor: torch.nn.Module = None,
247
+ ):
248
+ super(HiFTGenerator, self).__init__()
249
+
250
+ self.out_channels = 1
251
+ self.nb_harmonics = nb_harmonics
252
+ self.sampling_rate = sampling_rate
253
+ self.istft_params = istft_params
254
+ self.lrelu_slope = lrelu_slope
255
+ self.audio_limit = audio_limit
256
+
257
+ self.num_kernels = len(resblock_kernel_sizes)
258
+ self.num_upsamples = len(upsample_rates)
259
+ self.m_source = SourceModuleHnNSF(
260
+ sampling_rate=sampling_rate,
261
+ upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
262
+ harmonic_num=nb_harmonics,
263
+ sine_amp=nsf_alpha,
264
+ add_noise_std=nsf_sigma,
265
+ voiced_threshod=nsf_voiced_threshold)
266
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
267
+
268
+ self.conv_pre = weight_norm(
269
+ Conv1d(in_channels, base_channels, 7, 1, padding=3)
270
+ )
271
+
272
+ # Up
273
+ self.ups = nn.ModuleList()
274
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
275
+ self.ups.append(
276
+ weight_norm(
277
+ ConvTranspose1d(
278
+ base_channels // (2**i),
279
+ base_channels // (2**(i + 1)),
280
+ k,
281
+ u,
282
+ padding=(k - u) // 2,
283
+ )
284
+ )
285
+ )
286
+
287
+ # Down
288
+ self.source_downs = nn.ModuleList()
289
+ self.source_resblocks = nn.ModuleList()
290
+ downsample_rates = [1] + upsample_rates[::-1][:-1]
291
+ downsample_cum_rates = np.cumprod(downsample_rates)
292
+ for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes)):
293
+ if u == 1:
294
+ self.source_downs.append(
295
+ Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
296
+ )
297
+ else:
298
+ self.source_downs.append(
299
+ Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
300
+ )
301
+
302
+ self.source_resblocks.append(
303
+ ResBlock(base_channels // (2 ** (i + 1)), k, d)
304
+ )
305
+
306
+ self.resblocks = nn.ModuleList()
307
+ for i in range(len(self.ups)):
308
+ ch = base_channels // (2**(i + 1))
309
+ for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
310
+ self.resblocks.append(ResBlock(ch, k, d))
311
+
312
+ self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
313
+ self.ups.apply(init_weights)
314
+ self.conv_post.apply(init_weights)
315
+ self.reflection_pad = nn.ReflectionPad1d((1, 0))
316
+ self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
317
+ self.f0_predictor = f0_predictor
318
+
319
+ def remove_weight_norm(self):
320
+ print('Removing weight norm...')
321
+ for l in self.ups:
322
+ remove_weight_norm(l)
323
+ for l in self.resblocks:
324
+ l.remove_weight_norm()
325
+ remove_weight_norm(self.conv_pre)
326
+ remove_weight_norm(self.conv_post)
327
+ self.m_source.remove_weight_norm()
328
+ for l in self.source_downs:
329
+ remove_weight_norm(l)
330
+ for l in self.source_resblocks:
331
+ l.remove_weight_norm()
332
+
333
+ def _stft(self, x):
334
+ spec = torch.stft(
335
+ x,
336
+ self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
337
+ return_complex=True)
338
+ spec = torch.view_as_real(spec) # [B, F, TT, 2]
339
+ return spec[..., 0], spec[..., 1]
340
+
341
+ def _istft(self, magnitude, phase):
342
+ magnitude = torch.clip(magnitude, max=1e2)
343
+ real = magnitude * torch.cos(phase)
344
+ img = magnitude * torch.sin(phase)
345
+ inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"],
346
+ self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
347
+ return inverse_transform
348
+
349
+ def decode(self, x: torch.Tensor, s: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
350
+ s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
351
+ s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
352
+
353
+ x = self.conv_pre(x)
354
+ for i in range(self.num_upsamples):
355
+ x = F.leaky_relu(x, self.lrelu_slope)
356
+ x = self.ups[i](x)
357
+
358
+ if i == self.num_upsamples - 1:
359
+ x = self.reflection_pad(x)
360
+
361
+ # fusion
362
+ si = self.source_downs[i](s_stft)
363
+ si = self.source_resblocks[i](si)
364
+ x = x + si
365
+
366
+ xs = None
367
+ for j in range(self.num_kernels):
368
+ if xs is None:
369
+ xs = self.resblocks[i * self.num_kernels + j](x)
370
+ else:
371
+ xs += self.resblocks[i * self.num_kernels + j](x)
372
+ x = xs / self.num_kernels
373
+
374
+ x = F.leaky_relu(x)
375
+ x = self.conv_post(x)
376
+ magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
377
+ phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy
378
+
379
+ x = self._istft(magnitude, phase)
380
+ x = torch.clamp(x, -self.audio_limit, self.audio_limit)
381
+ return x
382
+
383
+ def forward(
384
+ self,
385
+ batch: dict,
386
+ device: torch.device,
387
+ ) -> Dict[str, Optional[torch.Tensor]]:
388
+ speech_feat = batch['speech_feat'].transpose(1, 2).to(device)
389
+ # mel->f0
390
+ f0 = self.f0_predictor(speech_feat)
391
+ # f0->source
392
+ s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
393
+ s, _, _ = self.m_source(s)
394
+ s = s.transpose(1, 2)
395
+ # mel+source->speech
396
+ generated_speech = self.decode(x=speech_feat, s=s)
397
+ return generated_speech, f0
398
+
399
+ @torch.inference_mode()
400
+ def inference(self, speech_feat: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
401
+ # mel->f0
402
+ f0 = self.f0_predictor(speech_feat)
403
+ # f0->source
404
+ s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
405
+ s, _, _ = self.m_source(s)
406
+ s = s.transpose(1, 2)
407
+ # use cache_source to avoid glitch
408
+ if cache_source.shape[2] != 0:
409
+ s[:, :, :cache_source.shape[2]] = cache_source
410
+ generated_speech = self.decode(x=speech_feat, s=s)
411
+ return generated_speech, s
inspiremusic/hifigan/hifigan.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, Optional
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from matcha.hifigan.models import feature_loss, generator_loss, discriminator_loss
6
+ from inspiremusic.utils.losses import tpr_loss, mel_loss
7
+
8
+ class HiFiGan(nn.Module):
9
+ def __init__(self, generator, discriminator, mel_spec_transform,
10
+ multi_mel_spectral_recon_loss_weight=45, feat_match_loss_weight=2.0,
11
+ tpr_loss_weight=1.0, tpr_loss_tau=0.04):
12
+ super(HiFiGan, self).__init__()
13
+ self.generator = generator
14
+ self.discriminator = discriminator
15
+ self.mel_spec_transform = mel_spec_transform
16
+ self.multi_mel_spectral_recon_loss_weight = multi_mel_spectral_recon_loss_weight
17
+ self.feat_match_loss_weight = feat_match_loss_weight
18
+ self.tpr_loss_weight = tpr_loss_weight
19
+ self.tpr_loss_tau = tpr_loss_tau
20
+
21
+ def forward(
22
+ self,
23
+ batch: dict,
24
+ device: torch.device,
25
+ ) -> Dict[str, Optional[torch.Tensor]]:
26
+ if batch['turn'] == 'generator':
27
+ return self.forward_generator(batch, device)
28
+ else:
29
+ return self.forward_discriminator(batch, device)
30
+
31
+ def forward_generator(self, batch, device):
32
+ real_speech = batch['speech'].to(device)
33
+ pitch_feat = batch['pitch_feat'].to(device)
34
+ # 1. calculate generator outputs
35
+ generated_speech, generated_f0 = self.generator(batch, device)
36
+ # 2. calculate discriminator outputs
37
+ y_d_rs, y_d_gs, fmap_rs, fmap_gs = self.discriminator(real_speech, generated_speech)
38
+ # 3. calculate generator losses, feature loss, mel loss, tpr losses [Optional]
39
+ loss_gen, _ = generator_loss(y_d_gs)
40
+ loss_fm = feature_loss(fmap_rs, fmap_gs)
41
+ loss_mel = mel_loss(real_speech, generated_speech, self.mel_spec_transform)
42
+ if self.tpr_loss_weight != 0:
43
+ loss_tpr = tpr_loss(y_d_rs, y_d_gs, self.tpr_loss_tau)
44
+ else:
45
+ loss_tpr = torch.zeros(1).to(device)
46
+ loss_f0 = F.l1_loss(generated_f0, pitch_feat)
47
+ loss = loss_gen + self.feat_match_loss_weight * loss_fm + \
48
+ self.multi_mel_spectral_recon_loss_weight * loss_mel + \
49
+ self.tpr_loss_weight * loss_tpr + loss_f0
50
+ return {'loss': loss, 'loss_gen': loss_gen, 'loss_fm': loss_fm, 'loss_mel': loss_mel, 'loss_tpr': loss_tpr, 'loss_f0': loss_f0}
51
+
52
+ def forward_discriminator(self, batch, device):
53
+ real_speech = batch['speech'].to(device)
54
+ # 1. calculate generator outputs
55
+ with torch.no_grad():
56
+ generated_speech, generated_f0 = self.generator(batch, device)
57
+ # 2. calculate discriminator outputs
58
+ y_d_rs, y_d_gs, fmap_rs, fmap_gs = self.discriminator(real_speech, generated_speech)
59
+ # 3. calculate discriminator losses, tpr losses [Optional]
60
+ loss_disc, _, _ = discriminator_loss(y_d_rs, y_d_gs)
61
+ if self.tpr_loss_weight != 0:
62
+ loss_tpr = tpr_loss(y_d_rs, y_d_gs, self.tpr_loss_tau)
63
+ else:
64
+ loss_tpr = torch.zeros(1).to(device)
65
+ loss = loss_disc + self.tpr_loss_weight * loss_tpr
66
+ return {'loss': loss, 'loss_disc': loss_disc, 'loss_tpr': loss_tpr}
inspiremusic/llm/llm.py ADDED
@@ -0,0 +1,402 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import Dict, Optional, Callable, List, Generator
15
+ import torch
16
+ from torch import nn
17
+ from torch.nn.utils.rnn import pad_sequence, unpad_sequence
18
+ from inspiremusic.utils.common import IGNORE_ID
19
+ from inspiremusic.transformer.label_smoothing_loss import LabelSmoothingLoss
20
+ from inspiremusic.utils.common import th_accuracy
21
+ from torch import Tensor
22
+ from math import log
23
+ from einops import rearrange, reduce, repeat
24
+ import logging
25
+
26
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
27
+
28
+ class SinusoidalEmbedding(nn.Module):
29
+ def __init__(self, dim: int):
30
+ super().__init__()
31
+ self.dim = dim
32
+
33
+ def forward(self, x: Tensor) -> Tensor:
34
+ device, half_dim = x.device, self.dim // 2
35
+ emb = torch.tensor(log(10000) / (half_dim - 1), device=device)
36
+ emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
37
+ emb = rearrange(x, "i -> i 1") * rearrange(emb, "j -> 1 j")
38
+ return torch.cat((emb.sin(), emb.cos()), dim=-1).to(torch.float32)
39
+
40
+ class LLM(torch.nn.Module):
41
+ def __init__(
42
+ self,
43
+ text_encoder_input_size: int,
44
+ llm_input_size: int,
45
+ llm_output_size: int,
46
+ audio_token_size: int,
47
+ llm: torch.nn.Module,
48
+ sampling: Callable,
49
+ text_encoder_conf: Dict = None,
50
+ length_normalized_loss: bool = True,
51
+ lsm_weight: float = 0.0,
52
+ frozen_input_embed: bool = False,
53
+ **kwargs,
54
+ ):
55
+ super().__init__()
56
+ self.llm_input_size = llm_input_size
57
+ self.audio_token_size = audio_token_size
58
+ # 1. build text token inputs related modules
59
+
60
+ if llm is None:
61
+ self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size)
62
+ else:
63
+ self.text_embedding = llm.model.model.embed_tokens
64
+ if frozen_input_embed:
65
+ print("Freezing input embedding layer")
66
+ for p in self.text_embedding.parameters():
67
+ p.requires_grad = False
68
+ self.chorus_embedding = torch.nn.Embedding(5, llm_input_size) # intro, chorus, verse1, verse2 , outro
69
+
70
+ self.text_encoder_conf = text_encoder_conf
71
+ self.text_encoder = self.build_encoder(text_encoder_conf)
72
+ self.infer_cfg_ratio = kwargs.get("infer_cfg_ratio", None)
73
+ logging.info(f"infer_cfg_ratio: {self.infer_cfg_ratio}")
74
+ self.train_cfg_ratio = kwargs.get("train_cfg_ratio", None)
75
+ logging.info(f"train_cfg_ratio: {self.train_cfg_ratio}")
76
+ # 2. build audio token language model related modules
77
+ self.sos_eos = 0
78
+ self.task_id = 1
79
+
80
+ self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
81
+ self.llm = llm
82
+ self.llm_decoder = nn.Linear(llm_output_size, audio_token_size + 1)
83
+ self.criterion_ce = LabelSmoothingLoss(
84
+ size=audio_token_size + 1,
85
+ padding_idx=IGNORE_ID,
86
+ smoothing=lsm_weight,
87
+ normalize_length=length_normalized_loss,
88
+ )
89
+
90
+ # 3. [Optional] build audio token related modules
91
+ self.speech_embedding = torch.nn.Embedding(audio_token_size, llm_input_size)
92
+ self.spk_embed_affine_layer = torch.nn.Linear(192, llm_input_size)
93
+ self.num_codebooks = 4
94
+ # 4. sampling method
95
+ self.sampling = sampling
96
+ self.time_embedding = SinusoidalEmbedding(llm_input_size)
97
+
98
+ def cfg_dropout(self, text_token, text_token_len, p):
99
+ # Classifier-Free Guidance Dropout
100
+ B = text_token.size(0)
101
+ num_samples_to_mask = int(p * B)
102
+ if num_samples_to_mask == 0:
103
+ num_samples_to_mask = 1
104
+ indices_to_mask = torch.randperm(B, device=text_token.device)[:num_samples_to_mask]
105
+ text_token[indices_to_mask] = 0
106
+ text_token_len[indices_to_mask] = 0
107
+
108
+ return text_token, text_token_len
109
+
110
+ def build_encoder(self, encoder_conf=None):
111
+ if encoder_conf is None:
112
+ assert hasattr(self, "encoder_conf"), \
113
+ "function param encoder_conf is None and model doesn't has encoder_conf attribute either."
114
+ encoder_conf = self.encoder_conf
115
+
116
+ encoder_name = encoder_conf.pop("name", "transformer")
117
+ model = None
118
+ if encoder_name == "transformer":
119
+ from inspiremusic.transformer.encoder.conformer_encoder import ConformerEncoder
120
+ model = ConformerEncoder(
121
+ **encoder_conf,
122
+ input_size=self.input_size,
123
+ use_cnn_module=False,
124
+ macaron_style=False,
125
+ )
126
+ elif encoder_name == "conformer":
127
+ from inspiremusic.transformer.encoder.conformer_encoder import ConformerEncoder
128
+ model = ConformerEncoder(
129
+ **encoder_conf,
130
+ input_size=self.input_size,
131
+ )
132
+ elif encoder_name == "llama_encoder":
133
+ from inspiremusic.transformer.encoder.llama_encoder import LlamaEncoder
134
+ model = LlamaEncoder(
135
+ **encoder_conf,
136
+ input_size=self.input_size,
137
+ )
138
+ elif encoder_name == "qwen2":
139
+ from inspiremusic.transformer.encoder.qwen_encoder import QwenEncoder
140
+ model = QwenEncoder(
141
+ **encoder_conf,
142
+ input_size=self.input_size,
143
+ )
144
+ elif encoder_name == "qwen2.5":
145
+ from inspiremusic.transformer.encoder.qwen_encoder import QwenEncoder
146
+ model = QwenEncoder(
147
+ **encoder_conf,
148
+ input_size=self.input_size,
149
+ )
150
+
151
+ encoder_conf["name"] = encoder_name
152
+
153
+ return model
154
+
155
+ def encode(self,
156
+ text: torch.Tensor,
157
+ text_lengths: torch.Tensor):
158
+ if self.text_encoder is not None:
159
+ encoder_out, encoder_mask = self.text_encoder(text, text_lengths,
160
+ decoding_chunk_size=1,
161
+ num_decoding_left_chunks=-1)
162
+ encoder_out_lens = encoder_mask.squeeze(1).sum(1)
163
+ encoder_out = self.text_encoder_affine_layer(encoder_out)
164
+ else:
165
+ encoder_out, encoder_out_lens = text, text_lengths
166
+ return encoder_out, encoder_out_lens
167
+
168
+ def pad_unpad_sequence(self, sos_eos_emb, embeddings, text_token,
169
+ text_token_len, task_id_emb, audio_token,
170
+ audio_token_len, seg_len):
171
+ text_token = unpad_sequence(text_token, text_token_len.cpu(),
172
+ batch_first=True)
173
+
174
+ audio_token = unpad_sequence(audio_token, audio_token_len.cpu(),
175
+ batch_first=True)
176
+
177
+ for i in range(len(embeddings)):
178
+ embeddings[i] = unpad_sequence(embeddings[i], seg_len.cpu(), batch_first=True)
179
+
180
+ lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0)] + [embedding[i] for embedding in embeddings] + [text_token[i], task_id_emb.squeeze(dim=0), audio_token[i]], dim=0) for i in range(len(text_token))]
181
+ lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
182
+ lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
183
+ return lm_input, lm_input_len
184
+
185
+ def forward(
186
+ self,
187
+ batch: dict,
188
+ device: torch.device,
189
+ ) -> Dict[str, Optional[torch.Tensor]]:
190
+ """
191
+ Args:
192
+ text: (B, L, D)
193
+ text_lengths: (B,)
194
+ audio: (B, T, N) or (B, T)
195
+ audio_lengths: (B,)
196
+ """
197
+ mask = True
198
+ text_token = batch['text_token'].to(device)
199
+ text_token_len = batch['text_token_len'].to(device)
200
+ if "semantic_token" not in batch:
201
+ audio_token = batch['acoustic_token'].to(device)
202
+ audio_token_len = batch['acoustic_token_len'].to(device)
203
+ audio_token = audio_token.view(audio_token.size(0), -1, self.num_codebooks)
204
+ audio_token = audio_token[:, :, 0]
205
+ audio_token_len = (audio_token_len / self.num_codebooks).long()
206
+
207
+ else:
208
+ audio_token = batch['semantic_token'].to(device)
209
+ audio_token_len = batch['semantic_token_len'].to(device)
210
+
211
+ time_start = batch['time_start'].to(device)
212
+ time_end = batch['time_end'].to(device)
213
+ chorus = batch['chorus'].to(device)
214
+ # 1. encode text_token
215
+
216
+ if self.train_cfg_ratio > 0:
217
+ # Classifier-Free Guidance
218
+ text_token, _ = self.cfg_dropout(text_token, text_token_len, self.train_cfg_ratio)
219
+
220
+ # 2. Time Embedding & chorus embedding
221
+ text_token = self.text_embedding(text_token)
222
+ text_token, text_token_len = self.encode(text_token, text_token_len)
223
+ if mask:
224
+ time_mask = time_start != -1.0
225
+ seg_len = time_mask.sum(-1)
226
+ time_start = time_start.masked_fill(~time_mask, 0.0)
227
+ time_end = time_end.masked_fill(~time_mask, 0.0)
228
+ chorus = chorus.masked_fill(~time_mask, 0)
229
+ time_start_embed = self.time_embedding(time_start.view(-1)).to(text_token.dtype)
230
+ time_end_embed = self.time_embedding(time_end.view(-1)).to(text_token.dtype)
231
+ time_start_embed = time_start_embed.view(chorus.size(0), chorus.size(1), -1)
232
+ time_end_embed = time_end_embed.view(chorus.size(0), chorus.size(1), -1)
233
+ chorus_embed = self.chorus_embedding(chorus)
234
+ lm_target = [torch.tensor([IGNORE_ID] * (1 + 3 * seg_len[i] + text_token_len[i]) + audio_token[i,:audio_token_len[i]].tolist() + [self.audio_token_size]) for i in range(text_token.size(0))]
235
+ else:
236
+ time_start_embed = self.time_embedding(time_start).to(text_token.dtype)
237
+ time_end_embed = self.time_embedding(time_end).to(text_token.dtype)
238
+ chorus_embed = self.chorus_embedding(chorus)
239
+
240
+ lm_target = [torch.tensor(
241
+ [IGNORE_ID] * (4 + text_token_len[i]) + audio_token[i,:audio_token_len[i]].tolist() + [self.audio_token_size]) for i in range(text_token.size(0))]
242
+
243
+ lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
244
+
245
+ # 3. eos and task_id
246
+ sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
247
+ task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
248
+
249
+ # 4. encode audio_token
250
+ audio_token = self.speech_embedding(audio_token)
251
+
252
+ # 5. unpad and pad
253
+ lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb,
254
+ [time_start_embed,
255
+ time_end_embed,
256
+ chorus_embed],
257
+ text_token,
258
+ text_token_len,
259
+ task_id_emb,
260
+ audio_token,
261
+ audio_token_len,
262
+ seg_len)
263
+ # 6. run lm forward
264
+ lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
265
+ logits = self.llm_decoder(lm_output)
266
+ loss = self.criterion_ce(logits, lm_target)
267
+
268
+ acc = th_accuracy(logits.view(-1, self.audio_token_size + 1), lm_target, ignore_label=IGNORE_ID)
269
+
270
+ return {'loss': loss, 'acc': acc}
271
+
272
+ def sampling_ids(
273
+ self,
274
+ weighted_scores: torch.Tensor,
275
+ decoded_tokens: List,
276
+ ignore_eos: bool = True,
277
+ ):
278
+ top_ids = self.sampling(weighted_scores, decoded_tokens)
279
+ return top_ids
280
+
281
+ @torch.inference_mode()
282
+ def inference(
283
+ self,
284
+ text: torch.Tensor,
285
+ text_len: torch.Tensor,
286
+ audio_token: torch.Tensor,
287
+ audio_token_len: torch.Tensor,
288
+ prompt_text: torch.Tensor,
289
+ prompt_text_len: torch.Tensor,
290
+ prompt_audio_token: torch.Tensor,
291
+ prompt_audio_token_len: torch.Tensor,
292
+ embeddings: List,
293
+ duration_to_gen: float = 30,
294
+ task: str = "continuation",
295
+ token_rate: int = 75,
296
+ limit_audio_prompt_len: int = 5,
297
+ ) -> Generator[torch.Tensor, None, None]:
298
+ device = text.device
299
+
300
+ if text is not None:
301
+ text = torch.concat([prompt_text, text], dim=1)
302
+ text_len += prompt_text_len
303
+ infer_cfg = self.infer_cfg_ratio >= 0.0
304
+ if infer_cfg:
305
+ text_cfg = self.text_embedding(text.new_zeros(text.shape))
306
+ text = self.text_embedding(text)
307
+
308
+ # 1. encode text
309
+ text, text_len = self.encode(text, text_len)
310
+
311
+ # 2. encode embedding
312
+ if embeddings is not None:
313
+ time_start, time_end, chorus = embeddings
314
+
315
+ if len(chorus.shape) == 1:
316
+ time_start_embed = self.time_embedding(time_start).reshape(1, 1, -1) # .half()
317
+ time_end_embed = self.time_embedding(time_end).reshape(1, 1, -1) # .half()
318
+ chorus_embed = self.chorus_embedding(chorus).reshape(1, 1, -1) # .half()
319
+ else:
320
+ time_start_embed = self.time_embedding(
321
+ time_start.view(-1)).reshape(1, chorus.size(1), -1) # .half()
322
+ time_end_embed = self.time_embedding(time_end.view(-1)).reshape(1, chorus.size(1), -1) # .half()
323
+ chorus_embed = self.chorus_embedding(chorus) # .half()
324
+
325
+ # 3. concat llm_input
326
+ sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
327
+ task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
328
+
329
+ if audio_token_len:
330
+ audio_token = audio_token[:, :(limit_audio_prompt_len * token_rate)]
331
+ audio_token_emb = self.speech_embedding(audio_token)
332
+ else:
333
+ audio_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
334
+
335
+ if prompt_audio_token_len:
336
+ prompt_audio_token_emb = self.speech_embedding(prompt_audio_token)
337
+ else:
338
+ prompt_audio_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
339
+ # Check if removing prompt audio token will fail decoding.
340
+
341
+ if task == "continuation":
342
+ lm_input = torch.concat(
343
+ [sos_eos_emb, time_start_embed, time_end_embed,
344
+ chorus_embed, text, task_id_emb, audio_token_emb], dim=1)
345
+
346
+ if infer_cfg:
347
+ audio_cfg = self.speech_embedding(
348
+ audio_token.new_zeros(audio_token.shape))
349
+ lm_cf_input = torch.concat(
350
+ [sos_eos_emb, torch.rand_like(time_start_embed),
351
+ torch.rand_like(time_end_embed),
352
+ torch.rand_like(chorus_embed), text_cfg, task_id_emb,
353
+ audio_cfg], dim=1)
354
+ lm_input = torch.cat([lm_input, lm_cf_input], 0)
355
+ else:
356
+ lm_input = torch.concat(
357
+ [sos_eos_emb, time_start_embed, time_end_embed,
358
+ chorus_embed, text, task_id_emb], dim=1)
359
+ if infer_cfg:
360
+ lm_cf_input = torch.concat(
361
+ [sos_eos_emb, torch.rand_like(time_start_embed),
362
+ torch.rand_like(time_end_embed),
363
+ torch.rand_like(chorus_embed), text_cfg, task_id_emb],
364
+ dim=1)
365
+ lm_input = torch.cat([lm_input, lm_cf_input], 0)
366
+
367
+ # 4. cal min/max_length
368
+ min_len = duration_to_gen * token_rate
369
+ max_len = duration_to_gen * token_rate
370
+ logging.info(
371
+ f"LLM generation sequence length: {max_len}, generate audio length {duration_to_gen}s.")
372
+
373
+ # 5. step by step decode
374
+ out_tokens = []
375
+ offset = 0
376
+ state = None
377
+
378
+ for i in range(int(max_len)):
379
+ y_pred, _, state = self.llm.forward_one_step(lm_input, torch.ones(lm_input.shape[0], lm_input.shape[1], device=lm_input.device).to(torch.bool), cache=state)
380
+ logits = self.llm_decoder(y_pred[:, -1])
381
+ if infer_cfg:
382
+ # perform context free guidance
383
+ logits_cf = logits[1]
384
+ logits = logits[0]
385
+ infer_cfg_ratio = self.infer_cfg_ratio
386
+ logits = infer_cfg_ratio * logits + (1 - infer_cfg_ratio) * logits_cf
387
+
388
+ logp = logits.log_softmax(dim=-1)
389
+ logp = logp.squeeze(dim=0)
390
+ top_ids = self.sampling_ids(logp, out_tokens, ignore_eos=i < min_len).item()
391
+
392
+ if top_ids == self.audio_token_size:
393
+ break
394
+
395
+ # # in stream mode, yield token one by one
396
+
397
+ yield torch.tensor([[top_ids]], dtype=torch.int64, device=device)
398
+ out_tokens.append(top_ids)
399
+ offset += lm_input.size(1)
400
+ lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
401
+ if infer_cfg:
402
+ lm_input = lm_input.repeat(2, 1, 1)
inspiremusic/metrics/clap_score.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import os
15
+ import requests
16
+ from tqdm import tqdm
17
+ import torch
18
+ import numpy as np
19
+ import laion_clap
20
+ from clap_module.factory import load_state_dict
21
+ import librosa
22
+ import pyloudnorm as pyln
23
+
24
+ # following documentation from https://github.com/LAION-AI/CLAP
25
+ def int16_to_float32(x):
26
+ return (x / 32767.0).astype(np.float32)
27
+
28
+ def float32_to_int16(x):
29
+ x = np.clip(x, a_min=-1., a_max=1.)
30
+ return (x * 32767.).astype(np.int16)
31
+
32
+
33
+ def clap_score(id2text, audio_path, audio_files_extension='.wav', clap_model='music_audioset_epoch_15_esc_90.14.pt'):
34
+ """
35
+ Cosine similarity is computed between the LAION-CLAP text embedding of the given prompt and
36
+ the LAION-CLAP audio embedding of the generated audio. LION-CLAP: https://github.com/LAION-AI/CLAP
37
+
38
+ This evaluation script assumes that audio_path files are identified with the ids in id2text.
39
+
40
+ clap_score() evaluates all ids in id2text.
41
+
42
+ GPU-based computation.
43
+
44
+ Select one of the following models from https://github.com/LAION-AI/CLAP:
45
+ - music_speech_audioset_epoch_15_esc_89.98.pt (used by musicgen)
46
+ - music_audioset_epoch_15_esc_90.14.pt
47
+ - music_speech_epoch_15_esc_89.25.pt
48
+ - 630k-audioset-fusion-best.pt (our default, with "fusion" to handle longer inputs)
49
+
50
+ Params:
51
+ -- id2text: dictionary with the mapping between id (generated audio filenames in audio_path)
52
+ and text (prompt used to generate audio). clap_score() evaluates all ids in id2text.
53
+ -- audio_path: path where the generated audio files to evaluate are available.
54
+ -- audio_files_extension: files extension (default .wav) in eval_path.
55
+ -- clap_model: choose one of the above clap_models (default: '630k-audioset-fusion-best.pt').
56
+ Returns:
57
+ -- CLAP-LION score
58
+ """
59
+ # load model
60
+ if clap_model == 'music_speech_audioset_epoch_15_esc_89.98.pt':
61
+ url = 'https://huggingface.co/lukewys/laion_clap/resolve/main/music_speech_audioset_epoch_15_esc_89.98.pt'
62
+ clap_path = 'CLAP/music_speech_audioset_epoch_15_esc_89.98.pt'
63
+ model = laion_clap.CLAP_Module(enable_fusion=False, amodel='HTSAT-base', device='cuda')
64
+ elif clap_model == 'music_audioset_epoch_15_esc_90.14.pt':
65
+ url = 'https://huggingface.co/lukewys/laion_clap/resolve/main/music_audioset_epoch_15_esc_90.14.pt'
66
+ clap_path = 'CLAP/music_audioset_epoch_15_esc_90.14.pt'
67
+ model = laion_clap.CLAP_Module(enable_fusion=False, amodel='HTSAT-base', device='cuda')
68
+ elif clap_model == 'music_speech_epoch_15_esc_89.25.pt':
69
+ url = 'https://huggingface.co/lukewys/laion_clap/resolve/main/music_speech_epoch_15_esc_89.25.pt'
70
+ clap_path = 'CLAP/music_speech_epoch_15_esc_89.25.pt'
71
+ model = laion_clap.CLAP_Module(enable_fusion=False, amodel='HTSAT-base', device='cuda')
72
+ elif clap_model == '630k-audioset-fusion-best.pt':
73
+ url = 'https://huggingface.co/lukewys/laion_clap/resolve/main/630k-audioset-fusion-best.pt'
74
+ clap_path = 'CLAP/630k-audioset-fusion-best.pt'
75
+ model = laion_clap.CLAP_Module(enable_fusion=True, device='cuda')
76
+ else:
77
+ raise ValueError('clap_model not implemented')
78
+
79
+ # download clap_model if not already downloaded
80
+ if not os.path.exists(clap_path):
81
+ print('Downloading ', clap_model, '...')
82
+ os.makedirs(os.path.dirname(clap_path), exist_ok=True)
83
+
84
+ response = requests.get(url, stream=True)
85
+ total_size = int(response.headers.get('content-length', 0))
86
+
87
+ with open(clap_path, 'wb') as file:
88
+ with tqdm(total=total_size, unit='B', unit_scale=True) as progress_bar:
89
+ for data in response.iter_content(chunk_size=8192):
90
+ file.write(data)
91
+ progress_bar.update(len(data))
92
+
93
+ # fixing CLAP-LION issue, see: https://github.com/LAION-AI/CLAP/issues/118
94
+ pkg = load_state_dict(clap_path)
95
+ pkg.pop('text_branch.embeddings.position_ids', None)
96
+ model.model.load_state_dict(pkg)
97
+ model.eval()
98
+
99
+ if not os.path.isdir(audio_path):
100
+ raise ValueError(f'audio_path: {audio_path} does not exist')
101
+
102
+ if id2text:
103
+ print('[EXTRACTING TEXT EMBEDDINGS] ')
104
+ batch_size = 64
105
+ text_emb = {}
106
+ for i in tqdm(range(0, len(id2text), batch_size)):
107
+ batch_ids = list(id2text.keys())[i:i+batch_size]
108
+ batch_texts = [id2text[id] for id in batch_ids]
109
+ with torch.no_grad():
110
+ embeddings = model.get_text_embedding(batch_texts, use_tensor=True)
111
+ for id, emb in zip(batch_ids, embeddings):
112
+ text_emb[id] = emb
113
+
114
+ else:
115
+ raise ValueError('Must specify id2text')
116
+
117
+ print('[EVALUATING GENERATIONS] ', audio_path)
118
+ score = 0
119
+ count = 0
120
+ for id in tqdm(id2text.keys()):
121
+ file_path = os.path.join(audio_path, str(id)+audio_files_extension)
122
+ if os.path.isfile(file_path):
123
+ with torch.no_grad():
124
+ audio, _ = librosa.load(file_path, sr=48000, mono=True) # sample rate should be 48000
125
+ audio = pyln.normalize.peak(audio, -1.0)
126
+ audio = audio.reshape(1, -1) # unsqueeze (1,T)
127
+ audio = torch.from_numpy(int16_to_float32(float32_to_int16(audio))).float()
128
+ audio_embeddings = model.get_audio_embedding_from_data(x = audio, use_tensor=True)
129
+ cosine_sim = torch.nn.functional.cosine_similarity(audio_embeddings, text_emb[id].unsqueeze(0), dim=1, eps=1e-8)[0]
130
+ print(f"{id} | CLAP score = {cosine_sim}")
131
+ score += cosine_sim
132
+ count += 1
133
+
134
+ return score / count if count > 0 else 0
135
+
inspiremusic/metrics/openl3_fd.py ADDED
@@ -0,0 +1,338 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import openl3
15
+ import librosa
16
+ import numpy as np
17
+ from scipy import linalg
18
+ import glob
19
+ from tqdm import tqdm
20
+ import os
21
+ import soxr
22
+ import pyloudnorm as pyln
23
+
24
+
25
+ def calculate_embd_statistics(embd_lst):
26
+ if isinstance(embd_lst, list):
27
+ embd_lst = np.array(embd_lst)
28
+ mu = np.mean(embd_lst, axis=0)
29
+ sigma = np.cov(embd_lst, rowvar=False)
30
+ return mu, sigma
31
+
32
+
33
+ def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
34
+ """
35
+ Adapted from: https://github.com/mseitzer/pytorch-fid/blob/master/src/pytorch_fid/fid_score.py
36
+ Adapted from: https://github.com/gudgud96/frechet-audio-distance/blob/main/frechet_audio_distance/fad.py
37
+
38
+ Numpy implementation of the Frechet Distance.
39
+
40
+ The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
41
+ and X_2 ~ N(mu_2, C_2) is
42
+ d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
43
+
44
+ Params:
45
+ -- mu1: Embedding's mean statistics for generated samples.
46
+ -- mu2: Embedding's mean statistics for reference samples.
47
+ -- sigma1: Covariance matrix over embeddings for generated samples.
48
+ -- sigma2: Covariance matrix over embeddings for reference samples.
49
+ Returns:
50
+ -- Fréchet Distance.
51
+ """
52
+
53
+ mu1 = np.atleast_1d(mu1)
54
+ mu2 = np.atleast_1d(mu2)
55
+
56
+ sigma1 = np.atleast_2d(sigma1)
57
+ sigma2 = np.atleast_2d(sigma2)
58
+
59
+ assert mu1.shape == mu2.shape, \
60
+ 'Training and test mean vectors have different lengths'
61
+ assert sigma1.shape == sigma2.shape, \
62
+ 'Training and test covariances have different dimensions'
63
+
64
+ diff = mu1 - mu2
65
+
66
+ # product might be almost singular
67
+ covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
68
+ if not np.isfinite(covmean).all():
69
+ msg = ('fid calculation produces singular product; '
70
+ 'adding %s to diagonal of cov estimates') % eps
71
+ print(msg)
72
+ offset = np.eye(sigma1.shape[0]) * eps
73
+ covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
74
+
75
+ # numerical error might give slight imaginary component
76
+ if np.iscomplexobj(covmean):
77
+ if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
78
+ m = np.max(np.abs(covmean.imag))
79
+ raise ValueError('Imaginary component {}'.format(m))
80
+ covmean = covmean.real
81
+
82
+ tr_covmean = np.trace(covmean)
83
+
84
+ return (diff.dot(diff) + np.trace(sigma1)
85
+ + np.trace(sigma2) - 2 * tr_covmean)
86
+
87
+
88
+ def extract_embeddings(directory_path, channels, samplingrate, content_type, openl3_hop_size, batch_size=16):
89
+ """
90
+ Given a list of files, compute their embeddings in batches.
91
+
92
+ If channels == 1: stereo audio is downmixed to mono. Mono embeddings are of dim=512.
93
+
94
+ If channels == 2: mono audio is "faked" to stereo by copying the mono channel.
95
+ Stereo embeddings are of dim=1024, since we concatenate L (dim=512) and R (dim=512) embeddings.
96
+
97
+ Params:
98
+ -- directory_path: path where the generated audio files are available.
99
+ -- channels: 1 (mono), or 2 (stereo) to get mono or stereo embeddings.
100
+ -- samplingrate: max bandwidth at which we evaluate the given signals. Up to 48kHz.
101
+ -- content_type: 'music' or 'env' to select a content type specific openl3 model.
102
+ -- openl3_hop_size: analysis resolution of openl3 in seconds. Openl3's input window is 1 sec.
103
+ -- batch_size: number of audio files to process in each batch.
104
+ Returns:
105
+ -- list of embeddings: [np.array[], ...], as expected by calculate_frechet_distance()
106
+ """
107
+ _, extension = os.path.splitext(directory_path)
108
+ if extension.lower() == ".scp":
109
+ wav_files = []
110
+ with open(directory_path, "r") as f:
111
+ for line in f:
112
+ sec = line.strip().split(" ")
113
+ wav_files.append(sec[1])
114
+ else:
115
+ wav_files = glob.glob(directory_path)
116
+ if len(wav_files) == 0:
117
+ raise ValueError('No files with this extension in this path!')
118
+ model = openl3.models.load_audio_embedding_model(input_repr="mel256", content_type=content_type, embedding_size=512)
119
+
120
+ first = True
121
+ for i in tqdm(range(0, len(wav_files), batch_size)):
122
+ batch_files = wav_files[i:i+batch_size]
123
+ batch_audio_l = []
124
+ batch_audio_r = []
125
+ batch_sr = []
126
+
127
+ for file in batch_files:
128
+ audio, sr = librosa.load(file, sr=None, mono=False)
129
+ audio = audio.T
130
+ audio = pyln.normalize.peak(audio, -1.0)
131
+ if audio.shape[0] < sr:
132
+ print('Audio shorter than 1 sec, openl3 will zero-pad it:', file, audio.shape, sr)
133
+
134
+ # resample to the desired evaluation bandwidth
135
+ audio = soxr.resample(audio, sr, samplingrate) # mono/stereo <- mono/stereo, input sr, output sr
136
+
137
+ # mono embeddings are stored in batch_audio_l (R channel not used)
138
+ if channels == 1:
139
+ batch_audio_l.append(audio)
140
+
141
+ elif channels == 2:
142
+ if audio.ndim == 1:
143
+ # if mono, "fake" stereo by copying mono channel to L and R
144
+ batch_audio_l.append(audio)
145
+ batch_audio_r.append(audio)
146
+ elif audio.ndim == 2:
147
+ # if it's stereo separate channels for openl3
148
+ batch_audio_l.append(audio[:,0])
149
+ batch_audio_r.append(audio[:,1])
150
+
151
+ batch_sr.append(samplingrate)
152
+
153
+ # extracting mono embeddings (dim=512) or the L channel for stereo embeddings
154
+ emb, _ = openl3.get_audio_embedding(batch_audio_l, batch_sr, model=model, verbose=False, hop_size=openl3_hop_size, batch_size=batch_size)
155
+
156
+ # format mono embedding
157
+ if channels == 1:
158
+ emb = np.concatenate(emb,axis=0)
159
+
160
+ # extracting stereo embeddings (dim=1024), since we concatenate L (dim=512) and R (dim=512) embeddings
161
+ elif channels == 2:
162
+ # extract the missing R channel
163
+ emb_r, _ = openl3.get_audio_embedding(batch_audio_r, batch_sr, model=model, verbose=False, hop_size=openl3_hop_size, batch_size=batch_size)
164
+ emb = [np.concatenate([l, r], axis=1) for l, r in zip(emb, emb_r)]
165
+ emb = np.concatenate(emb, axis=0)
166
+
167
+ # concatenate embeddings
168
+ if first:
169
+ embeddings = emb
170
+ first = False
171
+ else:
172
+ embeddings = np.concatenate([embeddings, emb], axis=0)
173
+
174
+ # return as a list of embeddings: [np.array[], ...]
175
+ return [e for e in embeddings]
176
+
177
+
178
+ def extract_embeddings_nobatching(directory_path, channels, samplingrate, content_type, openl3_hop_size):
179
+ """
180
+ Given a list of files, compute their embeddings one by one.
181
+
182
+ If channels == 1: stereo audio is downmixed to mono. Mono embeddings are of dim=512.
183
+
184
+ If channels == 2: mono audio is "faked" to stereo by copying the mono channel.
185
+ Stereo embeddings are of dim=1024, since we concatenate L (dim=512) and R (dim=512) embeddings.
186
+
187
+ Params:
188
+ -- directory_path: path where the generated audio files are available.
189
+ -- channels: 1 (mono), or 2 (stereo) to get mono or stereo embeddings.
190
+ -- samplingrate: max bandwidth at which we evaluate the given signals. Up to 48kHz.
191
+ -- content_type: 'music' or 'env' to select a content type specific openl3 model.
192
+ -- openl3_hop_size: analysis resolution of openl3 in seconds. Openl3's input window is 1 sec.
193
+ Returns:
194
+ -- list of embeddings: [np.array[], ...], as expected by calculate_frechet_distance()
195
+ """
196
+ _, extension = os.path.splitext(directory_path)
197
+ if extension.lower() == ".scp":
198
+ wav_files = []
199
+ with open(directory_path, "r") as f:
200
+ for line in f:
201
+ sec = line.strip().split(" ")
202
+ wav_files.append(sec[1])
203
+ else:
204
+ wav_files = glob.glob(directory_path)
205
+ if len(wav_files) == 0:
206
+ raise ValueError('No files with this extension in this path!')
207
+ model = openl3.models.load_audio_embedding_model(input_repr="mel256", content_type=content_type, embedding_size=512)
208
+
209
+ first = True
210
+ for file in tqdm(wav_files):
211
+ audio, sr = librosa.load(file, sr=None)
212
+ audio = pyln.normalize.peak(audio, -1.0)
213
+ if audio.shape[0] < sr:
214
+ print('Audio shorter than 1 sec, openl3 will zero-pad it:', file, audio.shape, sr)
215
+
216
+ # resample to the desired evaluation bandwidth
217
+ audio = soxr.resample(audio, sr, samplingrate) # mono/stereo <- mono/stereo, input sr, output sr
218
+
219
+ # extracting stereo embeddings (dim=1024), since we concatenate L (dim=512) and R (dim=512) embeddings
220
+ if channels == 2:
221
+ if audio.ndim == 1:
222
+ audio_l3, sr_l3 = audio, samplingrate
223
+ elif audio.ndim == 2:
224
+ # if it's stereo separate channels for openl3
225
+ audio_l3 = [audio[:,0], audio[:,1]]
226
+ sr_l3 = [samplingrate, samplingrate]
227
+ emb, _ = openl3.get_audio_embedding(audio_l3, sr_l3, model=model, verbose=False, hop_size=openl3_hop_size)
228
+ if audio.ndim == 1:
229
+ # if mono audio, "fake" stereo by concatenating mono embedding as L and R embeddings
230
+ emb = np.concatenate([emb, emb],axis=1)
231
+ elif audio.ndim == 2:
232
+ emb = np.concatenate(emb,axis=1)
233
+
234
+ # or extracting mono embeddings (dim=512)
235
+ elif channels == 1:
236
+ emb, _ = openl3.get_audio_embedding(audio, samplingrate, model=model, verbose=False, hop_size=openl3_hop_size)
237
+
238
+ # concatenate embeddings
239
+ if first:
240
+ embeddings = emb
241
+ first = False
242
+ else:
243
+ embeddings = np.concatenate([embeddings, emb], axis=0)
244
+
245
+ # return as a list of embeddings: [np.array[], ...]
246
+ return [e for e in embeddings]
247
+
248
+
249
+ def openl3_fd(channels, samplingrate, content_type, openl3_hop_size, eval_path,
250
+ eval_files_extension='.wav', ref_path=None, ref_files_extension='.wav', load_ref_embeddings=None, batching=False):
251
+ """
252
+ Compute the Fréchet Distance between files in eval_path and ref_path.
253
+
254
+ Fréchet distance computed on top of openl3 embeddings.
255
+
256
+ GPU-based computation.
257
+
258
+ Extracting the embeddings is timeconsuming. After being computed once, we store them.
259
+ We store pre-computed reference embedding statistics in load/openl3_fd/
260
+ To load those and save computation, just set the path in load_ref_embeddings.
261
+ If load_ref_embeddings is set, ref_path is not required.
262
+
263
+ Params:
264
+ -- channels: 1 (mono), or 2 (stereo) to get the Fréchet Distance over mono or stereo embeddings.
265
+ -- samplingrate: max bandwith at wich we evaluate the given signals. Up to 48kHz.
266
+ -- content_type: 'music' or 'env' to select a content type for openl3.
267
+ -- openl3_hop_size: analysis resolution of openl3 in seconds. Openl3's input window is 1 sec.
268
+ -- eval_path: path where the generated audio files to evaluate are available.
269
+ -- eval_files_extenstion: files extension (default .wav) in eval_path.
270
+ -- ref_path: path where the reference audio files are available. (instead of load_ref_embeddings)
271
+ -- ref_files_extension: files extension (default .wav) in ref_path.
272
+ -- load_ref_embeddings: path to the reference embedding statistics. (inestead of ref_path)
273
+ -- batching: set batch size (with an int) or set to False (default False).
274
+ Returns:
275
+ -- Fréchet distance.
276
+ """
277
+
278
+ if not os.path.isdir(eval_path):
279
+ raise ValueError('eval_path does not exist')
280
+
281
+ if load_ref_embeddings:
282
+ if not os.path.exists(load_ref_embeddings):
283
+ raise ValueError('load_ref_embeddings does not exist')
284
+ print('[LOADING REFERENCE EMBEDDINGS] ', load_ref_embeddings)
285
+ loaded = np.load(load_ref_embeddings)
286
+ mu_ref = loaded['mu_ref']
287
+ sigma_ref = loaded['sigma_ref']
288
+
289
+ else:
290
+ if ref_path:
291
+ if not os.path.isdir(ref_path):
292
+ if not os.path.isfile(ref_path):
293
+ raise ValueError("ref_path does not exist")
294
+ if os.path.isfile(ref_path):
295
+ path = ref_path
296
+ else:
297
+ path = os.path.join(ref_path, '*'+ref_files_extension)
298
+ print('[EXTRACTING REFERENCE EMBEDDINGS] ', path)
299
+ if batching:
300
+ ref_embeddings = extract_embeddings(path, channels, samplingrate, content_type, openl3_hop_size, batch_size=batching)
301
+ else:
302
+ ref_embeddings = extract_embeddings_nobatching(path, channels, samplingrate, content_type, openl3_hop_size)
303
+ mu_ref, sigma_ref = calculate_embd_statistics(ref_embeddings)
304
+
305
+ # store statistics to load later on
306
+ if not os.path.exists('load/openl3_fd'):
307
+ os.makedirs('load/openl3_fd/')
308
+ save_ref_embeddings_path = (
309
+ 'load/openl3_fd/' +
310
+ path.replace('/', '_') +
311
+ '__channels' + str(channels) +
312
+ '__' + str(samplingrate) +
313
+ '__openl3' + str(content_type) +
314
+ '__openl3hopsize' + str(openl3_hop_size) +
315
+ '__batch' + str(batching) +
316
+ '.npz'
317
+ )
318
+ np.savez(save_ref_embeddings_path, mu_ref=mu_ref, sigma_ref=sigma_ref)
319
+ print('[REFERENCE EMBEDDINGS][SAVED] ', save_ref_embeddings_path)
320
+
321
+ else:
322
+ raise ValueError('Must specify ref_path or load_ref_embeddings')
323
+
324
+ path = os.path.join(eval_path, '*'+eval_files_extension)
325
+ print('[EXTRACTING EVALUATION EMBEDDINGS] ', path)
326
+ if batching:
327
+ eval_embeddings = extract_embeddings(path, channels, samplingrate, content_type, openl3_hop_size, batch_size=batching)
328
+ else:
329
+ eval_embeddings = extract_embeddings_nobatching(path, channels, samplingrate, content_type, openl3_hop_size)
330
+ mu_eval, sigma_eval = calculate_embd_statistics(eval_embeddings)
331
+
332
+ fd = calculate_frechet_distance(mu_eval, sigma_eval, mu_ref, sigma_ref)
333
+ if load_ref_embeddings:
334
+ print('[FRéCHET DISTANCE] ', eval_path, load_ref_embeddings, fd)
335
+ else:
336
+ print('[FRéCHET DISTANCE] ', eval_path, ref_path, fd)
337
+
338
+ return fd
inspiremusic/metrics/passt_kld.py ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import warnings
15
+ warnings.filterwarnings("ignore", category=UserWarning)
16
+ warnings.filterwarnings("ignore", category=FutureWarning)
17
+
18
+ import os
19
+ import contextlib
20
+ from functools import partial
21
+ from tqdm import tqdm
22
+ import pickle
23
+ import numpy as np
24
+ import librosa
25
+ from hear21passt.base import get_basic_model
26
+ import pyloudnorm as pyln
27
+
28
+ import torch
29
+ import torch.nn.functional as F
30
+
31
+
32
+ SAMPLING_RATE = 32000
33
+
34
+
35
+ class _patch_passt_stft:
36
+ """
37
+ From version 1.8.0, return_complex must always be given explicitly
38
+ for real inputs and return_complex=False has been deprecated.
39
+
40
+ Decorator to patch torch.stft in PaSST that uses an old stft version.
41
+
42
+ Adapted from: https://github.com/facebookresearch/audiocraft/blob/a2b96756956846e194c9255d0cdadc2b47c93f1b/audiocraft/metrics/kld.py
43
+ """
44
+ def __init__(self):
45
+ self.old_stft = torch.stft
46
+
47
+ def __enter__(self):
48
+ # return_complex is a mandatory parameter in latest torch versions.
49
+ # torch is throwing RuntimeErrors when not set.
50
+ # see: https://pytorch.org/docs/1.7.1/generated/torch.stft.html?highlight=stft#torch.stft
51
+ # see: https://github.com/kkoutini/passt_hear21/commit/dce83183674e559162b49924d666c0a916dc967a
52
+ torch.stft = partial(torch.stft, return_complex=False)
53
+
54
+ def __exit__(self, *exc):
55
+ torch.stft = self.old_stft
56
+
57
+
58
+ def return_probabilities(model, audio_path, window_size=10, overlap=5, collect='mean'):
59
+ """
60
+ Given an audio and the PaSST model, return the probabilities of each AudioSet class.
61
+
62
+ Audio is converted to mono at 32kHz.
63
+
64
+ PaSST model is trained with 10 sec inputs. We refer to this parameter as the window_size.
65
+ We set it to 10 sec for consistency with PaSST training.
66
+
67
+ For longer audios, we split audio into overlapping analysis windows of window_size and overlap of 10 and 5 seconds.
68
+ PaSST supports 10, 20 or 30 sec inputs. Not longer inputs: https://github.com/kkoutini/PaSST/issues/19
69
+
70
+ Note that AudioSet taggers normally use sigmoid output layers. Yet, to compute the
71
+ KL we work with normalized probabilities by running a softmax over logits as in MusicGen:
72
+ https://github.com/facebookresearch/audiocraft/blob/a2b96756956846e194c9255d0cdadc2b47c93f1b/audiocraft/metrics/kld.py
73
+
74
+ This implementation assumes run will be on GPU.
75
+
76
+ Params:
77
+ -- model: PaSST model on a GPU.
78
+ -- audio_path: path to the audio to be loaded with librosa.
79
+ -- window_size (default=10 sec): analysis window (and receptive field) of PaSST.
80
+ -- overlap (default=5 sec): overlap of the running analysis window for inputs longar than window_size (10 sec).
81
+ -- collect (default='mean'): for longer inputs, aggregate/collect via 'mean' or 'max' pooling along logits vector.
82
+ Returns:
83
+ -- 527 probabilities (after softmax, no logarithm).
84
+ """
85
+ # load the audio using librosa
86
+ audio, _ = librosa.load(audio_path, sr=SAMPLING_RATE, mono=True)
87
+ audio = pyln.normalize.peak(audio, -1.0)
88
+
89
+ # calculate the step size for the analysis windows with the specified overlap
90
+ step_size = int((window_size - overlap) * SAMPLING_RATE)
91
+
92
+ # iterate over the audio, creating analysis windows
93
+ probabilities = []
94
+ for i in range(0, max(step_size, len(audio) - step_size), step_size):
95
+ # extract the current analysis window
96
+ window = audio[i:i + int(window_size * SAMPLING_RATE)]
97
+
98
+ # pad the window with zeros if it's shorter than the desired window size
99
+ if len(window) < int(window_size * SAMPLING_RATE):
100
+ # discard window if it's too small (avoid mostly zeros predicted as silence), as in MusicGen:
101
+ # https://github.com/facebookresearch/audiocraft/blob/a2b96756956846e194c9255d0cdadc2b47c93f1b/audiocraft/metrics/kld.py
102
+ if len(window) > int(window_size * SAMPLING_RATE * 0.15):
103
+ tmp = np.zeros(int(window_size * SAMPLING_RATE))
104
+ tmp[:len(window)] = window
105
+ window = tmp
106
+
107
+ # convert to a PyTorch tensor and move to GPU
108
+ audio_wave = torch.from_numpy(window.astype(np.float32)).unsqueeze(0).cuda()
109
+
110
+ # get the probabilities for this analysis window
111
+ with open(os.devnull, 'w') as f, contextlib.redirect_stdout(f):
112
+ with torch.no_grad(), _patch_passt_stft():
113
+ logits = model(audio_wave)
114
+ probabilities.append(torch.squeeze(logits))
115
+
116
+ probabilities = torch.stack(probabilities)
117
+ if collect == 'mean':
118
+ probabilities = torch.mean(probabilities, dim=0)
119
+ elif collect == 'max':
120
+ probabilities, _ = torch.max(probabilities, dim=0)
121
+
122
+ return F.softmax(probabilities, dim=0).squeeze().cpu()
123
+
124
+
125
+ def passt_kld(ids, eval_path, eval_files_extension='.wav', ref_path=None, ref_files_extension='.wav', load_ref_probabilities=None, no_ids=[], collect='mean'):
126
+ """
127
+ Compute KL-divergence between the label probabilities of the generated audio with respect to the original audio.
128
+ Both generated audio (in eval_path) and original audio (in ref_path) are represented by the same prompt/description.
129
+ Audios are identified by an id, that is the name of the file in both directories and links the audio with the prompt/description.
130
+ segmenting the audio
131
+
132
+ For inputs longer that the 10 sec PaSST was trained on, we aggregate/collect via 'mean' (default) or 'max' pooling along the logits vector.
133
+ We split the inpot into overlapping analysis windows. Subsequently, we aggregate/collect (accross windows) the generated logits and then apply a softmax.
134
+
135
+ This evaluation script assumes that ids are in both ref_path and eval_path.
136
+
137
+ We label probabilities via the PaSST model: https://github.com/kkoutini/PaSST
138
+
139
+ GPU-based computation.
140
+
141
+ Extracting the probabilities is timeconsuming. After being computed once, we store them.
142
+ We store pre-computed reference probabilities in load/
143
+ To load those and save computation, just set the path in load_ref_probabilities.
144
+ If load_ref_probabilities is set, ref_path is not required.
145
+
146
+ Params:
147
+ -- ids: list of ids present in both eval_path and ref_path.
148
+ -- eval_path: path where the generated audio files to evaluate are available.
149
+ -- eval_files_extenstion: files extension (default .wav) in eval_path.
150
+ -- ref_path: path where the reference audio files are available. (instead of load_ref_probabilities)
151
+ -- ref_files_extenstion: files extension (default .wav) in ref_path.
152
+ -- load_ref_probabilities: path to the reference probabilities. (inestead of ref_path)
153
+ -- no_ids: it is possible that some reference audio is corrupted or not present. Ignore some this list of ids.
154
+ -- collect (default='mean'): for longer inputs, aggregate/collect via 'mean' or 'max' pooling along the logits vector.
155
+ Returns:
156
+ -- KL divergence
157
+ """
158
+ with open(os.devnull, 'w') as f, contextlib.redirect_stdout(f): # capturing all useless outputs from passt
159
+ # load model
160
+ model = get_basic_model(mode="logits")
161
+ model.eval()
162
+ model = model.cuda()
163
+
164
+ if not os.path.isdir(eval_path):
165
+ if not os.path.isfile(eval_path):
166
+ raise ValueError('eval_path does not exist')
167
+
168
+ if load_ref_probabilities:
169
+ if not os.path.exists(load_ref_probabilities):
170
+ raise ValueError('load_ref_probabilities does not exist')
171
+ print('[LOADING REFERENCE PROBABILITIES] ', load_ref_probabilities)
172
+ with open(load_ref_probabilities, 'rb') as fp:
173
+ ref_p = pickle.load(fp)
174
+
175
+ else:
176
+ if ref_path:
177
+ if not os.path.isdir(ref_path):
178
+ if os.path.isfile(ref_path):
179
+ id2utt = {}
180
+ with open(ref_path, "r") as f:
181
+ for line in f:
182
+ sec = line.strip().split(" ")
183
+ id2utt[sec[0]] = sec[1]
184
+ f.close()
185
+ else:
186
+ raise ValueError("ref_path does not exist")
187
+ print('[EXTRACTING REFERENCE PROBABILITIES] ', ref_path)
188
+ ref_p = {}
189
+ for id in tqdm(ids):
190
+ if id not in no_ids:
191
+ try:
192
+ if os.path.isfile(ref_path):
193
+ if id in id2utt.keys():
194
+ audio_path = id2utt[id]
195
+ else:
196
+ raise ValueError(f"id: {id} not in {ref_path}!")
197
+ else:
198
+ audio_path = os.path.join(ref_path, str(id)+ref_files_extension)
199
+ if os.path.isfile(audio_path):
200
+ ref_p[id] = return_probabilities(model, audio_path, collect=collect)
201
+ except Exception as e:
202
+ print(f"An unexpected error occurred with {id}: {e}\nIf you failed to download it you can add it to no_ids list.")
203
+
204
+ # store reference probabilities to load later on
205
+ if not os.path.exists('load/passt_kld/'):
206
+ os.makedirs('load/passt_kld/')
207
+ save_ref_probabilities_path = 'load/passt_kld/'+ref_path.replace('/', '_')+'_collect'+str(collect)+'__reference_probabilities.pkl'
208
+ with open(save_ref_probabilities_path, 'wb') as fp:
209
+ pickle.dump(ref_p, fp)
210
+ print('[REFERENCE EMBEDDINGS][SAVED] ', save_ref_probabilities_path)
211
+
212
+ else:
213
+ raise ValueError('Must specify ref_path or load_ref_probabilities')
214
+
215
+ print('[EVALUATING GENERATIONS] ', eval_path)
216
+
217
+ passt_kl = 0
218
+ count = 0
219
+ for id in tqdm(ids):
220
+ if id not in no_ids:
221
+ try:
222
+ audio_path = os.path.join(eval_path, str(id)+eval_files_extension)
223
+ if os.path.isfile(audio_path):
224
+ eval_p = return_probabilities(model, audio_path, collect=collect)
225
+ # note: F.kl_div(x, y) is KL(y||x)
226
+ # see: https://github.com/pytorch/pytorch/issues/7337
227
+ # see: https://discuss.pytorch.org/t/kl-divergence-different-results-from-tf/56903/2
228
+ passt_kl += F.kl_div((ref_p[id] + 1e-6).log(), eval_p, reduction='sum', log_target=False)
229
+ count += 1
230
+ except Exception as e:
231
+ print(f"An unexpected error occurred with {id}: {e}\nIf you failed to download it you can add it to no_ids list.")
232
+ return passt_kl / count if count > 0 else 0
inspiremusic/music_tokenizer/__init__.py ADDED
File without changes
inspiremusic/music_tokenizer/env.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+ import shutil
17
+
18
+
19
+ class AttrDict(dict):
20
+ def __init__(self, *args, **kwargs):
21
+ super(AttrDict, self).__init__(*args, **kwargs)
22
+ self.__dict__ = self
23
+
24
+
25
+ def build_env(config, config_name, path):
26
+ t_path = os.path.join(path, config_name)
27
+ if config != t_path:
28
+ os.makedirs(path, exist_ok=True)
29
+ shutil.copyfile(config, os.path.join(path, config_name))
inspiremusic/music_tokenizer/meldataset.py ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # code based on https://github.com/b04901014/MQTTS
16
+ import math
17
+ import os
18
+ import random
19
+
20
+ import librosa
21
+ import numpy as np
22
+ import torch.utils.data
23
+ from librosa.filters import mel as librosa_mel_fn
24
+
25
+ def load_wav(full_path, sr):
26
+ wav, sr = librosa.load(full_path, sr=sr)
27
+ return wav, sr
28
+
29
+ def dynamic_range_compression(x, C=1, clip_val=1e-5):
30
+ return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
31
+
32
+ def dynamic_range_decompression(x, C=1):
33
+ return np.exp(x) / C
34
+
35
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
36
+ return torch.log(torch.clamp(x, min=clip_val) * C)
37
+
38
+ def dynamic_range_decompression_torch(x, C=1):
39
+ return torch.exp(x) / C
40
+
41
+ def spectral_normalize_torch(magnitudes):
42
+ output = dynamic_range_compression_torch(magnitudes)
43
+ return output
44
+
45
+ def spectral_de_normalize_torch(magnitudes):
46
+ output = dynamic_range_decompression_torch(magnitudes)
47
+ return output
48
+
49
+ mel_basis = {}
50
+ hann_window = {}
51
+
52
+ ## modified to get stft with return complex value = True for pytorch ver2.0
53
+ def mel_spectrogram(y,
54
+ n_fft,
55
+ num_mels,
56
+ sampling_rate,
57
+ hop_size,
58
+ win_size,
59
+ fmin,
60
+ fmax,
61
+ center=False):
62
+
63
+ global mel_basis, hann_window
64
+ if fmax not in mel_basis:
65
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
66
+ mel_basis[str(fmax) + '_' +
67
+ str(y.device)] = torch.from_numpy(mel).float().to(y.device)
68
+ hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
69
+
70
+ y = torch.nn.functional.pad(
71
+ y.unsqueeze(1), (int((n_fft - hop_size) / 2), int(
72
+ (n_fft - hop_size) / 2)),
73
+ mode='reflect')
74
+ y = y.squeeze(1)
75
+
76
+ spec = torch.view_as_real(torch.stft(
77
+ y,
78
+ n_fft,
79
+ hop_length=hop_size,
80
+ win_length=win_size,
81
+ window=hann_window[str(y.device)],
82
+ center=center,
83
+ pad_mode='reflect',
84
+ normalized=False,
85
+ onesided=True,
86
+ return_complex=True
87
+ ))
88
+
89
+ spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
90
+
91
+ spec = torch.matmul(mel_basis[str(fmax) + '_' + str(y.device)], spec)
92
+ spec = spectral_normalize_torch(spec)
93
+
94
+ return spec
95
+
96
+
97
+ def get_dataset_filelist(a):
98
+ with open(a.input_training_file, 'r') as f:
99
+ training_files = [l.strip() for l in f]
100
+ with open(a.input_validation_file, 'r') as f:
101
+ validation_files = [l.strip() for l in f]
102
+ return training_files, validation_files
103
+
104
+
105
+ class MelDataset(torch.utils.data.Dataset):
106
+ def __init__(self,
107
+ training_files,
108
+ segment_size,
109
+ n_fft,
110
+ num_mels,
111
+ hop_size,
112
+ win_size,
113
+ sampling_rate,
114
+ fmin,
115
+ fmax,
116
+ split=True,
117
+ shuffle=True,
118
+ n_cache_reuse=1,
119
+ device=None,
120
+ fmax_loss=None,
121
+ fine_tuning=False,
122
+ base_mels_path=None):
123
+ self.audio_files = training_files
124
+ random.seed(1234)
125
+ if shuffle:
126
+ random.shuffle(self.audio_files)
127
+ self.segment_size = segment_size
128
+ self.sampling_rate = sampling_rate
129
+ self.split = split
130
+ self.n_fft = n_fft
131
+ self.num_mels = num_mels
132
+ self.hop_size = hop_size
133
+ self.win_size = win_size
134
+ self.fmin = fmin
135
+ self.fmax = fmax
136
+ self.fmax_loss = fmax_loss
137
+ self.cached_wav = None
138
+ self.n_cache_reuse = n_cache_reuse
139
+ self._cache_ref_count = 0
140
+ self.device = device
141
+ self.fine_tuning = fine_tuning
142
+ self.base_mels_path = base_mels_path
143
+
144
+ def __getitem__(self, index):
145
+ filename = self.audio_files[index]
146
+ if self._cache_ref_count == 0:
147
+ try:
148
+ # Note by yuantian: load with the sample_rate of config
149
+ audio, sampling_rate = load_wav(filename, sr=self.sampling_rate)
150
+ except Exception as e:
151
+ print(f"Error on audio: {filename}")
152
+ audio = np.random.normal(size=(160000, )) * 0.05
153
+ sampling_rate = self.sampling_rate
154
+ self.cached_wav = audio
155
+ if sampling_rate != self.sampling_rate:
156
+ raise ValueError("{} SR doesn't match target {} SR".format(
157
+ sampling_rate, self.sampling_rate))
158
+ self._cache_ref_count = self.n_cache_reuse
159
+ else:
160
+ audio = self.cached_wav
161
+ self._cache_ref_count -= 1
162
+
163
+ audio = torch.FloatTensor(audio)
164
+ audio = audio.unsqueeze(0)
165
+
166
+ if not self.fine_tuning:
167
+ if self.split:
168
+ if audio.size(1) >= self.segment_size:
169
+ max_audio_start = audio.size(1) - self.segment_size
170
+ audio_start = random.randint(0, max_audio_start)
171
+ audio = audio[:, audio_start:audio_start +
172
+ self.segment_size]
173
+ else:
174
+ audio = torch.nn.functional.pad(audio, (
175
+ 0, self.segment_size - audio.size(1)), 'constant')
176
+
177
+ mel = mel_spectrogram(
178
+ audio,
179
+ self.n_fft,
180
+ self.num_mels,
181
+ self.sampling_rate,
182
+ self.hop_size,
183
+ self.win_size,
184
+ self.fmin,
185
+ self.fmax,
186
+ center=False)
187
+ else:
188
+ mel = np.load(
189
+ os.path.join(self.base_mels_path,
190
+ os.path.splitext(os.path.split(filename)[-1])[0] +
191
+ '.npy'))
192
+ mel = torch.from_numpy(mel)
193
+
194
+ if len(mel.shape) < 3:
195
+ mel = mel.unsqueeze(0)
196
+
197
+ if self.split:
198
+ frames_per_seg = math.ceil(self.segment_size / self.hop_size)
199
+
200
+ if audio.size(1) >= self.segment_size:
201
+ mel_start = random.randint(0,
202
+ mel.size(2) - frames_per_seg - 1)
203
+ mel = mel[:, :, mel_start:mel_start + frames_per_seg]
204
+ audio = audio[:, mel_start * self.hop_size:(
205
+ mel_start + frames_per_seg) * self.hop_size]
206
+ else:
207
+ mel = torch.nn.functional.pad(mel, (
208
+ 0, frames_per_seg - mel.size(2)), 'constant')
209
+ audio = torch.nn.functional.pad(audio, (
210
+ 0, self.segment_size - audio.size(1)), 'constant')
211
+
212
+ mel_loss = mel_spectrogram(
213
+ audio,
214
+ self.n_fft,
215
+ self.num_mels,
216
+ self.sampling_rate,
217
+ self.hop_size,
218
+ self.win_size,
219
+ self.fmin,
220
+ self.fmax_loss,
221
+ center=False)
222
+
223
+ return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze())
224
+
225
+ def __len__(self):
226
+ return len(self.audio_files)
inspiremusic/music_tokenizer/models.py ADDED
@@ -0,0 +1,548 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import torch
16
+ import torch.nn as nn
17
+ import torch.nn.functional as F
18
+ from torch.nn import AvgPool1d
19
+ from torch.nn import Conv1d
20
+ from torch.nn import Conv2d
21
+ from torch.nn import ConvTranspose1d
22
+ from torch.nn.utils import remove_weight_norm
23
+ from torch.nn.utils import spectral_norm
24
+ from torch.nn.utils import weight_norm
25
+
26
+ from inspiremusic.utils.tokenizer_utils import get_padding
27
+ from inspiremusic.utils.tokenizer_utils import init_weights
28
+
29
+ LRELU_SLOPE = 0.1
30
+
31
+ class ResBlock1(torch.nn.Module):
32
+ def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
33
+ super(ResBlock1, self).__init__()
34
+ self.h = h
35
+ self.convs1 = nn.ModuleList([
36
+ weight_norm(
37
+ Conv1d(
38
+ channels,
39
+ channels,
40
+ kernel_size,
41
+ 1,
42
+ dilation=dilation[0],
43
+ padding=get_padding(kernel_size, dilation[0]))),
44
+ weight_norm(
45
+ Conv1d(
46
+ channels,
47
+ channels,
48
+ kernel_size,
49
+ 1,
50
+ dilation=dilation[1],
51
+ padding=get_padding(kernel_size, dilation[1]))),
52
+ weight_norm(
53
+ Conv1d(
54
+ channels,
55
+ channels,
56
+ kernel_size,
57
+ 1,
58
+ dilation=dilation[2],
59
+ padding=get_padding(kernel_size, dilation[2])))
60
+ ])
61
+ self.convs1.apply(init_weights)
62
+
63
+ self.convs2 = nn.ModuleList([
64
+ weight_norm(
65
+ Conv1d(
66
+ channels,
67
+ channels,
68
+ kernel_size,
69
+ 1,
70
+ dilation=1,
71
+ padding=get_padding(kernel_size, 1))), weight_norm(
72
+ Conv1d(
73
+ channels,
74
+ channels,
75
+ kernel_size,
76
+ 1,
77
+ dilation=1,
78
+ padding=get_padding(kernel_size, 1))), weight_norm(
79
+ Conv1d(
80
+ channels,
81
+ channels,
82
+ kernel_size,
83
+ 1,
84
+ dilation=1,
85
+ padding=get_padding(kernel_size, 1)))
86
+ ])
87
+ self.convs2.apply(init_weights)
88
+
89
+ def forward(self, x):
90
+ for c1, c2 in zip(self.convs1, self.convs2):
91
+ xt = F.leaky_relu(x, LRELU_SLOPE)
92
+ xt = c1(xt)
93
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
94
+ xt = c2(xt)
95
+ x = xt + x
96
+ return x
97
+
98
+ def remove_weight_norm(self):
99
+ for l in self.convs1:
100
+ remove_weight_norm(l)
101
+ for l in self.convs2:
102
+ remove_weight_norm(l)
103
+
104
+
105
+ class ResBlock2(torch.nn.Module):
106
+ def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
107
+ super(ResBlock2, self).__init__()
108
+ self.h = h
109
+ self.convs = nn.ModuleList([
110
+ weight_norm(
111
+ Conv1d(
112
+ channels,
113
+ channels,
114
+ kernel_size,
115
+ 1,
116
+ dilation=dilation[0],
117
+ padding=get_padding(kernel_size, dilation[0]))),
118
+ weight_norm(
119
+ Conv1d(
120
+ channels,
121
+ channels,
122
+ kernel_size,
123
+ 1,
124
+ dilation=dilation[1],
125
+ padding=get_padding(kernel_size, dilation[1])))
126
+ ])
127
+ self.convs.apply(init_weights)
128
+
129
+ def forward(self, x):
130
+ for c in self.convs:
131
+ xt = F.leaky_relu(x, LRELU_SLOPE)
132
+ xt = c(xt)
133
+ x = xt + x
134
+ return x
135
+
136
+ def remove_weight_norm(self):
137
+ for l in self.convs:
138
+ remove_weight_norm(l)
139
+
140
+
141
+ class Generator(torch.nn.Module):
142
+ def __init__(self, h):
143
+ super(Generator, self).__init__()
144
+ self.h = h
145
+ self.num_kernels = len(h.resblock_kernel_sizes)
146
+ self.num_upsamples = len(h.upsample_rates)
147
+ self.conv_pre = weight_norm(
148
+ Conv1d(512, h.upsample_initial_channel, 7, 1, padding=3))
149
+ resblock = ResBlock1 if h.resblock == '1' else ResBlock2
150
+
151
+ self.ups = nn.ModuleList()
152
+ for i, (u,
153
+ k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
154
+ self.ups.append(
155
+ weight_norm(
156
+ ConvTranspose1d(
157
+ h.upsample_initial_channel // (2**i),
158
+ h.upsample_initial_channel // (2**(i + 1)),
159
+ k,
160
+ u,
161
+ # padding=(u//2 + u%2),
162
+ padding=(k - u) // 2,
163
+ # output_padding=u%2
164
+ )))
165
+
166
+ self.resblocks = nn.ModuleList()
167
+ for i in range(len(self.ups)):
168
+ ch = h.upsample_initial_channel // (2**(i + 1))
169
+ for j, (k, d) in enumerate(
170
+ zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
171
+ self.resblocks.append(resblock(h, ch, k, d))
172
+
173
+ self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
174
+ self.ups.apply(init_weights)
175
+ self.conv_post.apply(init_weights)
176
+
177
+ def forward(self, x):
178
+ x = self.conv_pre(x)
179
+ for i in range(self.num_upsamples):
180
+ x = F.leaky_relu(x, LRELU_SLOPE)
181
+ x = self.ups[i](x)
182
+ xs = None
183
+ for j in range(self.num_kernels):
184
+ if xs is None:
185
+ xs = self.resblocks[i * self.num_kernels + j](x)
186
+ else:
187
+ xs += self.resblocks[i * self.num_kernels + j](x)
188
+ x = xs / self.num_kernels
189
+ x = F.leaky_relu(x, LRELU_SLOPE)
190
+ x = self.conv_post(x)
191
+ x = torch.tanh(x)
192
+
193
+ return x
194
+
195
+ def remove_weight_norm(self):
196
+ print('Removing weight norm...')
197
+ for l in self.ups:
198
+ remove_weight_norm(l)
199
+ for l in self.resblocks:
200
+ l.remove_weight_norm()
201
+ remove_weight_norm(self.conv_pre)
202
+ remove_weight_norm(self.conv_post)
203
+
204
+
205
+ class DiscriminatorP(torch.nn.Module):
206
+ def __init__(self, period, kernel_size=5, stride=3,
207
+ use_spectral_norm=False):
208
+ super(DiscriminatorP, self).__init__()
209
+ self.period = period
210
+ norm_f = weight_norm if use_spectral_norm is False else spectral_norm
211
+ self.convs = nn.ModuleList([
212
+ norm_f(
213
+ Conv2d(
214
+ 1,
215
+ 32, (kernel_size, 1), (stride, 1),
216
+ padding=(get_padding(5, 1), 0))),
217
+ norm_f(
218
+ Conv2d(
219
+ 32,
220
+ 128, (kernel_size, 1), (stride, 1),
221
+ padding=(get_padding(5, 1), 0))),
222
+ norm_f(
223
+ Conv2d(
224
+ 128,
225
+ 512, (kernel_size, 1), (stride, 1),
226
+ padding=(get_padding(5, 1), 0))),
227
+ norm_f(
228
+ Conv2d(
229
+ 512,
230
+ 1024, (kernel_size, 1), (stride, 1),
231
+ padding=(get_padding(5, 1), 0))),
232
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
233
+ ])
234
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
235
+
236
+ def forward(self, x):
237
+ fmap = []
238
+
239
+ # 1d to 2d
240
+ b, c, t = x.shape
241
+ if t % self.period != 0: # pad first
242
+ n_pad = self.period - (t % self.period)
243
+ x = F.pad(x, (0, n_pad), "reflect")
244
+ t = t + n_pad
245
+ x = x.view(b, c, t // self.period, self.period)
246
+
247
+ for l in self.convs:
248
+ x = l(x)
249
+ x = F.leaky_relu(x, LRELU_SLOPE)
250
+ fmap.append(x)
251
+ x = self.conv_post(x)
252
+ fmap.append(x)
253
+ x = torch.flatten(x, 1, -1)
254
+
255
+ return x, fmap
256
+
257
+
258
+ class MultiPeriodDiscriminator(torch.nn.Module):
259
+ def __init__(self):
260
+ super(MultiPeriodDiscriminator, self).__init__()
261
+ self.discriminators = nn.ModuleList([
262
+ DiscriminatorP(2),
263
+ DiscriminatorP(3),
264
+ DiscriminatorP(5),
265
+ DiscriminatorP(7),
266
+ DiscriminatorP(11),
267
+ ])
268
+
269
+ def forward(self, y, y_hat):
270
+ y_d_rs = []
271
+ y_d_gs = []
272
+ fmap_rs = []
273
+ fmap_gs = []
274
+ for i, d in enumerate(self.discriminators):
275
+ y_d_r, fmap_r = d(y)
276
+ y_d_g, fmap_g = d(y_hat)
277
+ y_d_rs.append(y_d_r)
278
+ fmap_rs.append(fmap_r)
279
+ y_d_gs.append(y_d_g)
280
+ fmap_gs.append(fmap_g)
281
+
282
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
283
+
284
+
285
+ class DiscriminatorS(torch.nn.Module):
286
+ def __init__(self, use_spectral_norm=False):
287
+ super(DiscriminatorS, self).__init__()
288
+ norm_f = weight_norm if use_spectral_norm is False else spectral_norm
289
+ self.convs = nn.ModuleList([
290
+ norm_f(Conv1d(1, 128, 15, 1, padding=7)),
291
+ norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
292
+ norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
293
+ norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
294
+ norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
295
+ norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
296
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
297
+ ])
298
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
299
+
300
+ def forward(self, x):
301
+ fmap = []
302
+ for l in self.convs:
303
+ x = l(x)
304
+ x = F.leaky_relu(x, LRELU_SLOPE)
305
+ fmap.append(x)
306
+ x = self.conv_post(x)
307
+ fmap.append(x)
308
+ x = torch.flatten(x, 1, -1)
309
+
310
+ return x, fmap
311
+
312
+
313
+ class MultiScaleDiscriminator(torch.nn.Module):
314
+ def __init__(self):
315
+ super(MultiScaleDiscriminator, self).__init__()
316
+ self.discriminators = nn.ModuleList([
317
+ DiscriminatorS(use_spectral_norm=True),
318
+ DiscriminatorS(),
319
+ DiscriminatorS(),
320
+ ])
321
+ self.meanpools = nn.ModuleList(
322
+ [AvgPool1d(4, 2, padding=2), AvgPool1d(4, 2, padding=2)])
323
+
324
+ def forward(self, y, y_hat):
325
+ y_d_rs = []
326
+ y_d_gs = []
327
+ fmap_rs = []
328
+ fmap_gs = []
329
+ for i, d in enumerate(self.discriminators):
330
+ if i != 0:
331
+ y = self.meanpools[i - 1](y)
332
+ y_hat = self.meanpools[i - 1](y_hat)
333
+ y_d_r, fmap_r = d(y)
334
+ y_d_g, fmap_g = d(y_hat)
335
+ y_d_rs.append(y_d_r)
336
+ fmap_rs.append(fmap_r)
337
+ y_d_gs.append(y_d_g)
338
+ fmap_gs.append(fmap_g)
339
+
340
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
341
+
342
+
343
+ def feature_loss(fmap_r, fmap_g):
344
+ loss = 0
345
+ for dr, dg in zip(fmap_r, fmap_g):
346
+ for rl, gl in zip(dr, dg):
347
+ loss += torch.mean(torch.abs(rl - gl))
348
+
349
+ return loss * 2
350
+
351
+
352
+ def discriminator_loss(disc_real_outputs, disc_generated_outputs):
353
+ loss = 0
354
+ r_losses = []
355
+ g_losses = []
356
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
357
+ r_loss = torch.mean((1 - dr)**2)
358
+ g_loss = torch.mean(dg**2)
359
+ loss += (r_loss + g_loss)
360
+ r_losses.append(r_loss.item())
361
+ g_losses.append(g_loss.item())
362
+
363
+ return loss, r_losses, g_losses
364
+
365
+
366
+ def generator_loss(disc_outputs):
367
+ loss = 0
368
+ gen_losses = []
369
+ for dg in disc_outputs:
370
+ l = torch.mean((1 - dg)**2)
371
+ gen_losses.append(l)
372
+ loss += l
373
+
374
+ return loss, gen_losses
375
+
376
+
377
+ class Encoder(torch.nn.Module):
378
+ def __init__(self, h):
379
+ super(Encoder, self).__init__()
380
+ self.h = h
381
+ self.num_kernels = len(h.resblock_kernel_sizes)
382
+ self.num_upsamples = len(h.upsample_rates)
383
+ self.conv_pre = weight_norm(Conv1d(1, 32, 7, 1, padding=3))
384
+ self.normalize = nn.ModuleList()
385
+ resblock = ResBlock1 if h.resblock == '1' else ResBlock2
386
+
387
+ self.ups = nn.ModuleList()
388
+ for i, (u, k) in enumerate(
389
+ list(
390
+ reversed(
391
+ list(zip(h.upsample_rates, h.upsample_kernel_sizes))))):
392
+ self.ups.append(
393
+ weight_norm(
394
+ Conv1d(
395
+ 32 * (2**i),
396
+ 32 * (2**(i + 1)),
397
+ k,
398
+ u,
399
+ padding=((k - u) // 2)
400
+ # padding=(u//2 + u%2)
401
+ )))
402
+ self.resblocks = nn.ModuleList()
403
+ for i in range(len(self.ups)):
404
+ ch = 32 * (2**(i + 1))
405
+ for j, (k, d) in enumerate(
406
+ zip(
407
+ list(reversed(h.resblock_kernel_sizes)),
408
+ list(reversed(h.resblock_dilation_sizes)))):
409
+ self.resblocks.append(resblock(h, ch, k, d))
410
+ self.normalize.append(
411
+ torch.nn.GroupNorm(ch // 16, ch, eps=1e-6, affine=True))
412
+ self.conv_post = Conv1d(512, 512, 3, 1, padding=1)
413
+ self.ups.apply(init_weights)
414
+ self.conv_post.apply(init_weights)
415
+
416
+ def forward(self, x):
417
+ x = self.conv_pre(x)
418
+ for i in range(self.num_upsamples):
419
+ x = F.leaky_relu(x, LRELU_SLOPE)
420
+ x = self.ups[i](x)
421
+ xs = None
422
+ for j in range(self.num_kernels):
423
+ if xs is None:
424
+ xs = self.resblocks[i * self.num_kernels + j](x)
425
+ xs = self.normalize[i * self.num_kernels + j](xs)
426
+ else:
427
+ xs += self.resblocks[i * self.num_kernels + j](x)
428
+ xs = self.normalize[i * self.num_kernels + j](xs)
429
+ x = xs / self.num_kernels
430
+ x = F.leaky_relu(x)
431
+ x = self.conv_post(x)
432
+ return x
433
+
434
+ def remove_weight_norm(self):
435
+ print('Removing weight norm...')
436
+ for l in self.ups:
437
+ remove_weight_norm(l)
438
+ for l in self.resblocks:
439
+ l.remove_weight_norm()
440
+ remove_weight_norm(self.conv_pre)
441
+
442
+
443
+ class Quantizer_module(torch.nn.Module):
444
+ def __init__(self, n_e, e_dim):
445
+ super(Quantizer_module, self).__init__()
446
+ self.embedding = nn.Embedding(n_e, e_dim)
447
+ self.embedding.weight.data.uniform_(-1.0 / n_e, 1.0 / n_e)
448
+
449
+ def forward(self, x):
450
+ # compute Euclidean distance
451
+ d = torch.sum(x ** 2, 1, keepdim=True) + torch.sum(self.embedding.weight ** 2, 1) \
452
+ - 2 * torch.matmul(x, self.embedding.weight.T)
453
+ min_indicies = torch.argmin(d, 1)
454
+ z_q = self.embedding(min_indicies)
455
+ return z_q, min_indicies
456
+
457
+
458
+ class Quantizer(torch.nn.Module):
459
+ def __init__(self, h):
460
+ super(Quantizer, self).__init__()
461
+ assert 512 % h.n_code_groups == 0
462
+ self.quantizer_modules = nn.ModuleList([
463
+ Quantizer_module(h.n_codes, 512 // h.n_code_groups)
464
+ for _ in range(h.n_code_groups)
465
+ ])
466
+ self.quantizer_modules2 = nn.ModuleList([
467
+ Quantizer_module(h.n_codes, 512 // h.n_code_groups)
468
+ for _ in range(h.n_code_groups)
469
+ ])
470
+ self.h = h
471
+ self.codebook_loss_lambda = self.h.codebook_loss_lambda # e.g., 1
472
+ self.commitment_loss_lambda = self.h.commitment_loss_lambda # e.g., 0.25
473
+ self.residul_layer = 2
474
+ self.n_code_groups = h.n_code_groups
475
+
476
+ def for_one_step(self, xin, idx):
477
+ xin = xin.transpose(1, 2)
478
+ x = xin.reshape(-1, 512)
479
+ x = torch.split(x, 512 // self.h.n_code_groups, dim=-1)
480
+ min_indicies = []
481
+ z_q = []
482
+ if idx == 0:
483
+ for _x, m in zip(x, self.quantizer_modules):
484
+ _z_q, _min_indicies = m(_x)
485
+ z_q.append(_z_q)
486
+ min_indicies.append(_min_indicies) #B * T,
487
+ z_q = torch.cat(z_q, -1).reshape(xin.shape)
488
+ # loss = 0.25 * torch.mean((z_q.detach() - xin) ** 2) + torch.mean((z_q - xin.detach()) ** 2)
489
+ loss = self.codebook_loss_lambda * torch.mean((z_q - xin.detach()) ** 2) \
490
+ + self.commitment_loss_lambda * torch.mean((z_q.detach() - xin) ** 2)
491
+ z_q = xin + (z_q - xin).detach()
492
+ z_q = z_q.transpose(1, 2)
493
+ return z_q, loss, min_indicies
494
+ else:
495
+ for _x, m in zip(x, self.quantizer_modules2):
496
+ _z_q, _min_indicies = m(_x)
497
+ z_q.append(_z_q)
498
+ min_indicies.append(_min_indicies) #B * T,
499
+ z_q = torch.cat(z_q, -1).reshape(xin.shape)
500
+ # loss = 0.25 * torch.mean((z_q.detach() - xin) ** 2) + torch.mean((z_q - xin.detach()) ** 2)
501
+ loss = self.codebook_loss_lambda * torch.mean((z_q - xin.detach()) ** 2) \
502
+ + self.commitment_loss_lambda * torch.mean((z_q.detach() - xin) ** 2)
503
+ z_q = xin + (z_q - xin).detach()
504
+ z_q = z_q.transpose(1, 2)
505
+ return z_q, loss, min_indicies
506
+
507
+ def forward(self, xin):
508
+ #B, C, T
509
+ quantized_out = 0.0
510
+ residual = xin
511
+ all_losses = []
512
+ all_indices = []
513
+ for i in range(self.residul_layer):
514
+ quantized, loss, indices = self.for_one_step(residual, i) #
515
+ residual = residual - quantized
516
+ quantized_out = quantized_out + quantized
517
+ all_indices.extend(indices) #
518
+ all_losses.append(loss)
519
+ all_losses = torch.stack(all_losses)
520
+ loss = torch.mean(all_losses)
521
+ return quantized_out, loss, all_indices
522
+
523
+ def embed(self, x):
524
+ #idx: N, T, 4
525
+ #print('x ', x.shape)
526
+ quantized_out = torch.tensor(0.0, device=x.device)
527
+ x = torch.split(x, 1, 2) # split, 将最后一个维度分开, 每个属于一个index group
528
+ #print('x.shape ', len(x),x[0].shape)
529
+ for i in range(self.residul_layer):
530
+ ret = []
531
+ if i == 0:
532
+ for j in range(self.n_code_groups):
533
+ q = x[j]
534
+ embed = self.quantizer_modules[j]
535
+ q = embed.embedding(q.squeeze(-1).long())
536
+ ret.append(q)
537
+ ret = torch.cat(ret, -1)
538
+ #print(ret.shape)
539
+ quantized_out = quantized_out + ret
540
+ else:
541
+ for j in range(self.n_code_groups):
542
+ q = x[j + self.n_code_groups]
543
+ embed = self.quantizer_modules2[j]
544
+ q = embed.embedding(q.squeeze(-1).long())
545
+ ret.append(q)
546
+ ret = torch.cat(ret, -1)
547
+ quantized_out = quantized_out + ret
548
+ return quantized_out.transpose(1, 2) #N, C, T
inspiremusic/music_tokenizer/vqvae.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import json
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+ from inspiremusic.music_tokenizer.env import AttrDict
20
+ from inspiremusic.music_tokenizer.models import Encoder
21
+ from inspiremusic.music_tokenizer.models import Generator
22
+ from inspiremusic.music_tokenizer.models import Quantizer
23
+
24
+
25
+ class VQVAE(nn.Module):
26
+ def __init__(self,
27
+ config_path,
28
+ ckpt_path,
29
+ with_encoder=False):
30
+ super(VQVAE, self).__init__()
31
+ ckpt = torch.load(ckpt_path)
32
+ with open(config_path) as f:
33
+ data = f.read()
34
+ json_config = json.loads(data)
35
+ self.h = AttrDict(json_config)
36
+ self.quantizer = Quantizer(self.h)
37
+ self.generator = Generator(self.h)
38
+ self.generator.load_state_dict(ckpt['generator'])
39
+ self.quantizer.load_state_dict(ckpt['quantizer'])
40
+ if with_encoder:
41
+ self.encoder = Encoder(self.h)
42
+ self.encoder.load_state_dict(ckpt['encoder'])
43
+
44
+ def forward(self, x):
45
+ # x is the codebook
46
+ # x.shape (B, T, Nq)
47
+ quant_emb = self.quantizer.embed(x)
48
+ return self.generator(quant_emb)
49
+
50
+ def encode(self, x):
51
+ batch_size = x.size(0)
52
+ if len(x.shape) == 3 and x.shape[-1] == 1:
53
+ x = x.squeeze(-1)
54
+ c = self.encoder(x.unsqueeze(1))
55
+ q, loss_q, c = self.quantizer(c)
56
+ c = [code.reshape(batch_size, -1) for code in c]
57
+ # shape: [N, T, 4]
58
+ return torch.stack(c, -1)
inspiremusic/text/abs_tokenizer.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from abc import ABC
16
+ from abc import abstractmethod
17
+ from typing import Iterable
18
+ from typing import List
19
+
20
+
21
+ class AbsTokenizer(ABC):
22
+ @abstractmethod
23
+ def text2tokens(self, line: str) -> List[str]:
24
+ raise NotImplementedError
25
+
26
+ @abstractmethod
27
+ def tokens2text(self, tokens: Iterable[str]) -> str:
28
+ raise NotImplementedError
29
+
30
+
31
+
32
+ def encode(self, line: str, **kwargs) -> List[str]:
33
+
34
+ return self.text2tokens(line)
inspiremusic/text/tokenizer.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import copy
16
+ import os
17
+ import re
18
+ from typing import Iterable, List, Union
19
+ import numpy as np
20
+ import torch
21
+
22
+ from inspiremusic.text.abs_tokenizer import AbsTokenizer
23
+ from transformers import AutoTokenizer
24
+
25
+ def get_tokenizer(tokenizer_name, tokenizer_path):
26
+ if "qwen" in tokenizer_name:
27
+ return QwenTokenizer(tokenizer_path,skip_special_tokens=True)
28
+ else:
29
+ return None
30
+
31
+ class QwenTokenizer(AbsTokenizer):
32
+ def __init__(
33
+ self,
34
+ token_path: str,
35
+ skip_special_tokens: bool = True,
36
+ ):
37
+ super().__init__()
38
+ # NOTE: non-chat model, all these special tokens keep randomly initialized.
39
+ special_tokens = {
40
+ 'eos_token': '<|endoftext|>',
41
+ 'pad_token': '<|endoftext|>',
42
+ 'additional_special_tokens': [
43
+ '<|im_start|>', '<|im_end|>', '<|endofprompt|>',
44
+ '[breath]', '<strong>', '</strong>', '[noise]',
45
+ '[laughter]', '[cough]', '[clucking]', '[accent]',
46
+ '[quick_breath]',
47
+ ]
48
+ }
49
+ self.tokenizer = AutoTokenizer.from_pretrained(token_path)
50
+ self.tokenizer.add_special_tokens(special_tokens)
51
+ self.skip_special_tokens = skip_special_tokens
52
+
53
+ def get_vocab_size(self):
54
+ return self.tokenizer.vocab_size
55
+
56
+ def text2tokens(self, line: str) -> List:
57
+ tokens = self.tokenizer([line], return_tensors="pt")
58
+ tokens = tokens["input_ids"][0].cpu().tolist()
59
+ return tokens
60
+
61
+ def tokens2text(self, tokens) -> str:
62
+ tokens = torch.tensor(tokens, dtype=torch.int64)
63
+ text = self.tokenizer.batch_decode([tokens], skip_special_tokens=self.skip_special_tokens)[0]
64
+ return text
65
+
66
+
67
+
68
+ def get_qwen_vocab_size(token_type: str):
69
+ if "qwen1.5" in token_type.lower() or "qwen2.0" in token_type.lower() or "qwen2.5" in token_type.lower():
70
+ # 293 for special and extra tokens, including endoftext, im_start, im_end, endofprompt and others in the future.
71
+ # model.vocab_size = 151936, tokenizer.vocab_size = 151643
72
+ # NOTE: the first three special tokens (endoftext, im_start, im_end) are trained in Chat series models,
73
+ # others are kept in random initialization state.
74
+ return 151643 + 293
75
+ else:
76
+ raise ValueError(f"Unknown tokenizer {token_type}")
inspiremusic/transformer/__init__.py ADDED
File without changes
inspiremusic/transformer/activation.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2020 Johns Hopkins University (Shinji Watanabe)
2
+ # 2020 Northwestern Polytechnical University (Pengcheng Guo)
3
+ # 2020 Mobvoi Inc (Binbin Zhang)
4
+ # 2024 Alibaba Inc (Xiang Lyu)
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """Swish() activation function for Conformer."""
18
+
19
+ import torch
20
+ from torch import nn, sin, pow
21
+ from torch.nn import Parameter
22
+
23
+
24
+ class Swish(torch.nn.Module):
25
+ """Construct an Swish object."""
26
+
27
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
28
+ """Return Swish activation function."""
29
+ return x * torch.sigmoid(x)
30
+
31
+
32
+ # Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
33
+ # LICENSE is in incl_licenses directory.
34
+ class Snake(nn.Module):
35
+ '''
36
+ Implementation of a sine-based periodic activation function
37
+ Shape:
38
+ - Input: (B, C, T)
39
+ - Output: (B, C, T), same shape as the input
40
+ Parameters:
41
+ - alpha - trainable parameter
42
+ References:
43
+ - This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
44
+ https://arxiv.org/abs/2006.08195
45
+ Examples:
46
+ >>> a1 = snake(256)
47
+ >>> x = torch.randn(256)
48
+ >>> x = a1(x)
49
+ '''
50
+ def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
51
+ '''
52
+ Initialization.
53
+ INPUT:
54
+ - in_features: shape of the input
55
+ - alpha: trainable parameter
56
+ alpha is initialized to 1 by default, higher values = higher-frequency.
57
+ alpha will be trained along with the rest of your model.
58
+ '''
59
+ super(Snake, self).__init__()
60
+ self.in_features = in_features
61
+
62
+ # initialize alpha
63
+ self.alpha_logscale = alpha_logscale
64
+ if self.alpha_logscale: # log scale alphas initialized to zeros
65
+ self.alpha = Parameter(torch.zeros(in_features) * alpha)
66
+ else: # linear scale alphas initialized to ones
67
+ self.alpha = Parameter(torch.ones(in_features) * alpha)
68
+
69
+ self.alpha.requires_grad = alpha_trainable
70
+
71
+ self.no_div_by_zero = 0.000000001
72
+
73
+ def forward(self, x):
74
+ '''
75
+ Forward pass of the function.
76
+ Applies the function to the input elementwise.
77
+ Snake ∶= x + 1/a * sin^2 (xa)
78
+ '''
79
+ alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
80
+ if self.alpha_logscale:
81
+ alpha = torch.exp(alpha)
82
+ x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
83
+
84
+ return x
inspiremusic/transformer/attention.py ADDED
@@ -0,0 +1,328 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019 Shigeki Karita
2
+ # 2020 Mobvoi Inc (Binbin Zhang)
3
+ # 2022 Xingchen Song ([email protected])
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """Multi-Head Attention layer definition."""
17
+
18
+ import math
19
+ from typing import Tuple
20
+
21
+ import torch
22
+ from torch import nn
23
+
24
+
25
+ class MultiHeadedAttention(nn.Module):
26
+ """Multi-Head Attention layer.
27
+
28
+ Args:
29
+ n_head (int): The number of heads.
30
+ n_feat (int): The number of features.
31
+ dropout_rate (float): Dropout rate.
32
+
33
+ """
34
+
35
+ def __init__(self,
36
+ n_head: int,
37
+ n_feat: int,
38
+ dropout_rate: float,
39
+ key_bias: bool = True):
40
+ """Construct an MultiHeadedAttention object."""
41
+ super().__init__()
42
+ assert n_feat % n_head == 0
43
+ # We assume d_v always equals d_k
44
+ self.d_k = n_feat // n_head
45
+ self.h = n_head
46
+ self.linear_q = nn.Linear(n_feat, n_feat)
47
+ self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias)
48
+ self.linear_v = nn.Linear(n_feat, n_feat)
49
+ self.linear_out = nn.Linear(n_feat, n_feat)
50
+ self.dropout = nn.Dropout(p=dropout_rate)
51
+
52
+ def forward_qkv(
53
+ self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
54
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
55
+ """Transform query, key and value.
56
+
57
+ Args:
58
+ query (torch.Tensor): Query tensor (#batch, time1, size).
59
+ key (torch.Tensor): Key tensor (#batch, time2, size).
60
+ value (torch.Tensor): Value tensor (#batch, time2, size).
61
+
62
+ Returns:
63
+ torch.Tensor: Transformed query tensor, size
64
+ (#batch, n_head, time1, d_k).
65
+ torch.Tensor: Transformed key tensor, size
66
+ (#batch, n_head, time2, d_k).
67
+ torch.Tensor: Transformed value tensor, size
68
+ (#batch, n_head, time2, d_k).
69
+
70
+ """
71
+ n_batch = query.size(0)
72
+ q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
73
+ k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
74
+ v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
75
+ q = q.transpose(1, 2) # (batch, head, time1, d_k)
76
+ k = k.transpose(1, 2) # (batch, head, time2, d_k)
77
+ v = v.transpose(1, 2) # (batch, head, time2, d_k)
78
+
79
+ return q, k, v
80
+
81
+ def forward_attention(
82
+ self,
83
+ value: torch.Tensor,
84
+ scores: torch.Tensor,
85
+ mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool)
86
+ ) -> torch.Tensor:
87
+ """Compute attention context vector.
88
+
89
+ Args:
90
+ value (torch.Tensor): Transformed value, size
91
+ (#batch, n_head, time2, d_k).
92
+ scores (torch.Tensor): Attention score, size
93
+ (#batch, n_head, time1, time2).
94
+ mask (torch.Tensor): Mask, size (#batch, 1, time2) or
95
+ (#batch, time1, time2), (0, 0, 0) means fake mask.
96
+
97
+ Returns:
98
+ torch.Tensor: Transformed value (#batch, time1, d_model)
99
+ weighted by the attention score (#batch, time1, time2).
100
+
101
+ """
102
+ n_batch = value.size(0)
103
+ # NOTE(xcsong): When will `if mask.size(2) > 0` be True?
104
+ # 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the
105
+ # 1st chunk to ease the onnx export.]
106
+ # 2. pytorch training
107
+ if mask.size(2) > 0: # time2 > 0
108
+ mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
109
+ # For last chunk, time2 might be larger than scores.size(-1)
110
+ mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2)
111
+ scores = scores.masked_fill(mask, -float('inf'))
112
+ attn = torch.softmax(scores, dim=-1).masked_fill(
113
+ mask, 0.0) # (batch, head, time1, time2)
114
+ # NOTE(xcsong): When will `if mask.size(2) > 0` be False?
115
+ # 1. onnx(16/-1, -1/-1, 16/0)
116
+ # 2. jit (16/-1, -1/-1, 16/0, 16/4)
117
+ else:
118
+ attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
119
+
120
+ p_attn = self.dropout(attn)
121
+ x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
122
+ x = (x.transpose(1, 2).contiguous().view(n_batch, -1,
123
+ self.h * self.d_k)
124
+ ) # (batch, time1, d_model)
125
+
126
+ return self.linear_out(x) # (batch, time1, d_model)
127
+
128
+ def forward(
129
+ self,
130
+ query: torch.Tensor,
131
+ key: torch.Tensor,
132
+ value: torch.Tensor,
133
+ mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
134
+ pos_emb: torch.Tensor = torch.empty(0),
135
+ cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
136
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
137
+ """Compute scaled dot product attention.
138
+
139
+ Args:
140
+ query (torch.Tensor): Query tensor (#batch, time1, size).
141
+ key (torch.Tensor): Key tensor (#batch, time2, size).
142
+ value (torch.Tensor): Value tensor (#batch, time2, size).
143
+ mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
144
+ (#batch, time1, time2).
145
+ 1.When applying cross attention between decoder and encoder,
146
+ the batch padding mask for input is in (#batch, 1, T) shape.
147
+ 2.When applying self attention of encoder,
148
+ the mask is in (#batch, T, T) shape.
149
+ 3.When applying self attention of decoder,
150
+ the mask is in (#batch, L, L) shape.
151
+ 4.If the different position in decoder see different block
152
+ of the encoder, such as Mocha, the passed in mask could be
153
+ in (#batch, L, T) shape. But there is no such case in current
154
+ InspireMusic.
155
+ cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
156
+ where `cache_t == chunk_size * num_decoding_left_chunks`
157
+ and `head * d_k == size`
158
+
159
+
160
+ Returns:
161
+ torch.Tensor: Output tensor (#batch, time1, d_model).
162
+ torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
163
+ where `cache_t == chunk_size * num_decoding_left_chunks`
164
+ and `head * d_k == size`
165
+
166
+ """
167
+ q, k, v = self.forward_qkv(query, key, value)
168
+
169
+ # NOTE(xcsong):
170
+ # when export onnx model, for 1st chunk, we feed
171
+ # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
172
+ # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
173
+ # In all modes, `if cache.size(0) > 0` will alwayse be `True`
174
+ # and we will always do splitting and
175
+ # concatnation(this will simplify onnx export). Note that
176
+ # it's OK to concat & split zero-shaped tensors(see code below).
177
+ # when export jit model, for 1st chunk, we always feed
178
+ # cache(0, 0, 0, 0) since jit supports dynamic if-branch.
179
+ # >>> a = torch.ones((1, 2, 0, 4))
180
+ # >>> b = torch.ones((1, 2, 3, 4))
181
+ # >>> c = torch.cat((a, b), dim=2)
182
+ # >>> torch.equal(b, c) # True
183
+ # >>> d = torch.split(a, 2, dim=-1)
184
+ # >>> torch.equal(d[0], d[1]) # True
185
+ if cache.size(0) > 0:
186
+ key_cache, value_cache = torch.split(cache,
187
+ cache.size(-1) // 2,
188
+ dim=-1)
189
+ k = torch.cat([key_cache, k], dim=2)
190
+ v = torch.cat([value_cache, v], dim=2)
191
+
192
+ # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
193
+ # non-trivial to calculate `next_cache_start` here.
194
+ new_cache = torch.cat((k, v), dim=-1)
195
+
196
+ scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
197
+ return self.forward_attention(v, scores, mask), new_cache
198
+
199
+
200
+ class RelPositionMultiHeadedAttention(MultiHeadedAttention):
201
+ """Multi-Head Attention layer with relative position encoding.
202
+ Paper: https://arxiv.org/abs/1901.02860
203
+ Args:
204
+ n_head (int): The number of heads.
205
+ n_feat (int): The number of features.
206
+ dropout_rate (float): Dropout rate.
207
+ """
208
+
209
+ def __init__(self,
210
+ n_head: int,
211
+ n_feat: int,
212
+ dropout_rate: float,
213
+ key_bias: bool = True):
214
+ """Construct an RelPositionMultiHeadedAttention object."""
215
+ super().__init__(n_head, n_feat, dropout_rate, key_bias)
216
+ # linear transformation for positional encoding
217
+ self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
218
+ # these two learnable bias are used in matrix c and matrix d
219
+ # as described in https://arxiv.org/abs/1901.02860 Section 3.3
220
+ self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
221
+ self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
222
+ torch.nn.init.xavier_uniform_(self.pos_bias_u)
223
+ torch.nn.init.xavier_uniform_(self.pos_bias_v)
224
+
225
+ def rel_shift(self, x: torch.Tensor) -> torch.Tensor:
226
+ """Compute relative positional encoding.
227
+
228
+ Args:
229
+ x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
230
+ time1 means the length of query vector.
231
+
232
+ Returns:
233
+ torch.Tensor: Output tensor.
234
+
235
+ """
236
+ zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1),
237
+ device=x.device,
238
+ dtype=x.dtype)
239
+ x_padded = torch.cat([zero_pad, x], dim=-1)
240
+
241
+ x_padded = x_padded.view(x.size()[0],
242
+ x.size()[1],
243
+ x.size(3) + 1, x.size(2))
244
+ x = x_padded[:, :, 1:].view_as(x)[
245
+ :, :, :, : x.size(-1) // 2 + 1
246
+ ] # only keep the positions from 0 to time2
247
+ return x
248
+
249
+ def forward(
250
+ self,
251
+ query: torch.Tensor,
252
+ key: torch.Tensor,
253
+ value: torch.Tensor,
254
+ mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
255
+ pos_emb: torch.Tensor = torch.empty(0),
256
+ cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
257
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
258
+ """Compute 'Scaled Dot Product Attention' with rel. positional encoding.
259
+ Args:
260
+ query (torch.Tensor): Query tensor (#batch, time1, size).
261
+ key (torch.Tensor): Key tensor (#batch, time2, size).
262
+ value (torch.Tensor): Value tensor (#batch, time2, size).
263
+ mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
264
+ (#batch, time1, time2), (0, 0, 0) means fake mask.
265
+ pos_emb (torch.Tensor): Positional embedding tensor
266
+ (#batch, time2, size).
267
+ cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
268
+ where `cache_t == chunk_size * num_decoding_left_chunks`
269
+ and `head * d_k == size`
270
+ Returns:
271
+ torch.Tensor: Output tensor (#batch, time1, d_model).
272
+ torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
273
+ where `cache_t == chunk_size * num_decoding_left_chunks`
274
+ and `head * d_k == size`
275
+ """
276
+ q, k, v = self.forward_qkv(query, key, value)
277
+ q = q.transpose(1, 2) # (batch, time1, head, d_k)
278
+
279
+ # NOTE(xcsong):
280
+ # when export onnx model, for 1st chunk, we feed
281
+ # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
282
+ # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
283
+ # In all modes, `if cache.size(0) > 0` will alwayse be `True`
284
+ # and we will always do splitting and
285
+ # concatnation(this will simplify onnx export). Note that
286
+ # it's OK to concat & split zero-shaped tensors(see code below).
287
+ # when export jit model, for 1st chunk, we always feed
288
+ # cache(0, 0, 0, 0) since jit supports dynamic if-branch.
289
+ # >>> a = torch.ones((1, 2, 0, 4))
290
+ # >>> b = torch.ones((1, 2, 3, 4))
291
+ # >>> c = torch.cat((a, b), dim=2)
292
+ # >>> torch.equal(b, c) # True
293
+ # >>> d = torch.split(a, 2, dim=-1)
294
+ # >>> torch.equal(d[0], d[1]) # True
295
+ if cache.size(0) > 0:
296
+ key_cache, value_cache = torch.split(cache,
297
+ cache.size(-1) // 2,
298
+ dim=-1)
299
+ k = torch.cat([key_cache, k], dim=2)
300
+ v = torch.cat([value_cache, v], dim=2)
301
+ # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
302
+ # non-trivial to calculate `next_cache_start` here.
303
+ new_cache = torch.cat((k, v), dim=-1)
304
+
305
+ n_batch_pos = pos_emb.size(0)
306
+ p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
307
+ p = p.transpose(1, 2) # (batch, head, time1, d_k)
308
+
309
+ # (batch, head, time1, d_k)
310
+ q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
311
+ # (batch, head, time1, d_k)
312
+ q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
313
+
314
+ # compute attention score
315
+ # first compute matrix a and matrix c
316
+ # as described in https://arxiv.org/abs/1901.02860 Section 3.3
317
+ # (batch, head, time1, time2)
318
+ matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
319
+ # compute matrix b and matrix d
320
+ # (batch, head, time1, time2)
321
+ matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
322
+ # NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used
323
+ if matrix_ac.shape != matrix_bd.shape:
324
+ matrix_bd = self.rel_shift(matrix_bd)
325
+
326
+ scores = (matrix_ac + matrix_bd) / math.sqrt(self.d_k) # (batch, head, time1, time2)
327
+
328
+ return self.forward_attention(v, scores, mask), new_cache
inspiremusic/transformer/convolution.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
2
+ # 2024 Alibaba Inc (Xiang Lyu)
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # Modified from ESPnet(https://github.com/espnet/espnet)
16
+ """ConvolutionModule definition."""
17
+
18
+ from typing import Tuple
19
+
20
+ import torch
21
+ from torch import nn
22
+
23
+
24
+ class ConvolutionModule(nn.Module):
25
+ """ConvolutionModule in Conformer model."""
26
+
27
+ def __init__(self,
28
+ channels: int,
29
+ kernel_size: int = 15,
30
+ activation: nn.Module = nn.ReLU(),
31
+ norm: str = "batch_norm",
32
+ causal: bool = False,
33
+ bias: bool = True):
34
+ """Construct an ConvolutionModule object.
35
+ Args:
36
+ channels (int): The number of channels of conv layers.
37
+ kernel_size (int): Kernel size of conv layers.
38
+ causal (int): Whether use causal convolution or not
39
+ """
40
+ super().__init__()
41
+
42
+ self.pointwise_conv1 = nn.Conv1d(
43
+ channels,
44
+ 2 * channels,
45
+ kernel_size=1,
46
+ stride=1,
47
+ padding=0,
48
+ bias=bias,
49
+ )
50
+ # self.lorder is used to distinguish if it's a causal convolution,
51
+ # if self.lorder > 0: it's a causal convolution, the input will be
52
+ # padded with self.lorder frames on the left in forward.
53
+ # else: it's a symmetrical convolution
54
+ if causal:
55
+ padding = 0
56
+ self.lorder = kernel_size - 1
57
+ else:
58
+ # kernel_size should be an odd number for none causal convolution
59
+ assert (kernel_size - 1) % 2 == 0
60
+ padding = (kernel_size - 1) // 2
61
+ self.lorder = 0
62
+ self.depthwise_conv = nn.Conv1d(
63
+ channels,
64
+ channels,
65
+ kernel_size,
66
+ stride=1,
67
+ padding=padding,
68
+ groups=channels,
69
+ bias=bias,
70
+ )
71
+
72
+ assert norm in ['batch_norm', 'layer_norm']
73
+ if norm == "batch_norm":
74
+ self.use_layer_norm = False
75
+ self.norm = nn.BatchNorm1d(channels)
76
+ else:
77
+ self.use_layer_norm = True
78
+ self.norm = nn.LayerNorm(channels)
79
+
80
+ self.pointwise_conv2 = nn.Conv1d(
81
+ channels,
82
+ channels,
83
+ kernel_size=1,
84
+ stride=1,
85
+ padding=0,
86
+ bias=bias,
87
+ )
88
+ self.activation = activation
89
+
90
+ def forward(
91
+ self,
92
+ x: torch.Tensor,
93
+ mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
94
+ cache: torch.Tensor = torch.zeros((0, 0, 0)),
95
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
96
+ """Compute convolution module.
97
+ Args:
98
+ x (torch.Tensor): Input tensor (#batch, time, channels).
99
+ mask_pad (torch.Tensor): used for batch padding (#batch, 1, time),
100
+ (0, 0, 0) means fake mask.
101
+ cache (torch.Tensor): left context cache, it is only
102
+ used in causal convolution (#batch, channels, cache_t),
103
+ (0, 0, 0) meas fake cache.
104
+ Returns:
105
+ torch.Tensor: Output tensor (#batch, time, channels).
106
+ """
107
+ # exchange the temporal dimension and the feature dimension
108
+ x = x.transpose(1, 2) # (#batch, channels, time)
109
+
110
+ # mask batch padding
111
+ if mask_pad.size(2) > 0: # time > 0
112
+ x.masked_fill_(~mask_pad, 0.0)
113
+
114
+ if self.lorder > 0:
115
+ if cache.size(2) == 0: # cache_t == 0
116
+ x = nn.functional.pad(x, (self.lorder, 0), 'constant', 0.0)
117
+ else:
118
+ assert cache.size(0) == x.size(0) # equal batch
119
+ assert cache.size(1) == x.size(1) # equal channel
120
+ x = torch.cat((cache, x), dim=2)
121
+ assert (x.size(2) > self.lorder)
122
+ new_cache = x[:, :, -self.lorder:]
123
+ else:
124
+ # It's better we just return None if no cache is required,
125
+ # However, for JIT export, here we just fake one tensor instead of
126
+ # None.
127
+ new_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
128
+
129
+ # GLU mechanism
130
+ x = self.pointwise_conv1(x) # (batch, 2*channel, dim)
131
+ x = nn.functional.glu(x, dim=1) # (batch, channel, dim)
132
+
133
+ # 1D Depthwise Conv
134
+ x = self.depthwise_conv(x)
135
+ if self.use_layer_norm:
136
+ x = x.transpose(1, 2)
137
+ x = self.activation(self.norm(x))
138
+ if self.use_layer_norm:
139
+ x = x.transpose(1, 2)
140
+ x = self.pointwise_conv2(x)
141
+ # mask batch padding
142
+ if mask_pad.size(2) > 0: # time > 0
143
+ x.masked_fill_(~mask_pad, 0.0)
144
+
145
+ return x.transpose(1, 2), new_cache
inspiremusic/transformer/decoder.py ADDED
@@ -0,0 +1,396 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
2
+ # 2024 Alibaba Inc (Xiang Lyu)
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # Modified from ESPnet(https://github.com/espnet/espnet)
16
+ """Decoder definition."""
17
+ from typing import Tuple, List, Optional
18
+
19
+ import torch
20
+ import torch.utils.checkpoint as ckpt
21
+ import logging
22
+
23
+ from inspiremusic.transformer.decoder_layer import DecoderLayer
24
+ from inspiremusic.transformer.positionwise_feed_forward import PositionwiseFeedForward
25
+ from inspiremusic.utils.class_utils import (
26
+ INSPIREMUSIC_EMB_CLASSES,
27
+ INSPIREMUSIC_ATTENTION_CLASSES,
28
+ INSPIREMUSIC_ACTIVATION_CLASSES,
29
+ )
30
+ from inspiremusic.utils.mask import (subsequent_mask, make_pad_mask)
31
+
32
+
33
+ class TransformerDecoder(torch.nn.Module):
34
+ """Base class of Transfomer decoder module.
35
+ Args:
36
+ vocab_size: output dim
37
+ encoder_output_size: dimension of attention
38
+ attention_heads: the number of heads of multi head attention
39
+ linear_units: the hidden units number of position-wise feedforward
40
+ num_blocks: the number of decoder blocks
41
+ dropout_rate: dropout rate
42
+ self_attention_dropout_rate: dropout rate for attention
43
+ input_layer: input layer type
44
+ use_output_layer: whether to use output layer
45
+ pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
46
+ normalize_before:
47
+ True: use layer_norm before each sub-block of a layer.
48
+ False: use layer_norm after each sub-block of a layer.
49
+ src_attention: if false, encoder-decoder cross attention is not
50
+ applied, such as CIF model
51
+ key_bias: whether use bias in attention.linear_k, False for whisper models.
52
+ gradient_checkpointing: rerunning a forward-pass segment for each
53
+ checkpointed segment during backward.
54
+ tie_word_embedding: Tie or clone module weights depending of whether we are
55
+ using TorchScript or not
56
+ """
57
+
58
+ def __init__(
59
+ self,
60
+ vocab_size: int,
61
+ encoder_output_size: int,
62
+ attention_heads: int = 4,
63
+ linear_units: int = 2048,
64
+ num_blocks: int = 6,
65
+ dropout_rate: float = 0.1,
66
+ positional_dropout_rate: float = 0.1,
67
+ self_attention_dropout_rate: float = 0.0,
68
+ src_attention_dropout_rate: float = 0.0,
69
+ input_layer: str = "embed",
70
+ use_output_layer: bool = True,
71
+ normalize_before: bool = True,
72
+ src_attention: bool = True,
73
+ key_bias: bool = True,
74
+ activation_type: str = "relu",
75
+ gradient_checkpointing: bool = False,
76
+ tie_word_embedding: bool = False,
77
+ ):
78
+ super().__init__()
79
+ attention_dim = encoder_output_size
80
+ activation = INSPIREMUSIC_ACTIVATION_CLASSES[activation_type]()
81
+
82
+ self.embed = torch.nn.Sequential(
83
+ torch.nn.Identity() if input_layer == "no_pos" else
84
+ torch.nn.Embedding(vocab_size, attention_dim),
85
+ INSPIREMUSIC_EMB_CLASSES[input_layer](attention_dim,
86
+ positional_dropout_rate),
87
+ )
88
+
89
+ self.normalize_before = normalize_before
90
+ self.after_norm = torch.nn.LayerNorm(attention_dim, eps=1e-5)
91
+ self.use_output_layer = use_output_layer
92
+ if use_output_layer:
93
+ self.output_layer = torch.nn.Linear(attention_dim, vocab_size)
94
+ else:
95
+ self.output_layer = torch.nn.Identity()
96
+ self.num_blocks = num_blocks
97
+ self.decoders = torch.nn.ModuleList([
98
+ DecoderLayer(
99
+ attention_dim,
100
+ INSPIREMUSIC_ATTENTION_CLASSES["selfattn"](
101
+ attention_heads, attention_dim,
102
+ self_attention_dropout_rate, key_bias),
103
+ INSPIREMUSIC_ATTENTION_CLASSES["selfattn"](
104
+ attention_heads, attention_dim, src_attention_dropout_rate,
105
+ key_bias) if src_attention else None,
106
+ PositionwiseFeedForward(attention_dim, linear_units,
107
+ dropout_rate, activation),
108
+ dropout_rate,
109
+ normalize_before,
110
+ ) for _ in range(self.num_blocks)
111
+ ])
112
+
113
+ self.gradient_checkpointing = gradient_checkpointing
114
+ self.tie_word_embedding = tie_word_embedding
115
+
116
+ def forward(
117
+ self,
118
+ memory: torch.Tensor,
119
+ memory_mask: torch.Tensor,
120
+ ys_in_pad: torch.Tensor,
121
+ ys_in_lens: torch.Tensor,
122
+ r_ys_in_pad: torch.Tensor = torch.empty(0),
123
+ reverse_weight: float = 0.0,
124
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
125
+ """Forward decoder.
126
+ Args:
127
+ memory: encoded memory, float32 (batch, maxlen_in, feat)
128
+ memory_mask: encoder memory mask, (batch, 1, maxlen_in)
129
+ ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
130
+ ys_in_lens: input lengths of this batch (batch)
131
+ r_ys_in_pad: not used in transformer decoder, in order to unify api
132
+ with bidirectional decoder
133
+ reverse_weight: not used in transformer decoder, in order to unify
134
+ api with bidirectional decode
135
+ Returns:
136
+ (tuple): tuple containing:
137
+ x: decoded token score before softmax (batch, maxlen_out,
138
+ vocab_size) if use_output_layer is True,
139
+ torch.tensor(0.0), in order to unify api with bidirectional decoder
140
+ olens: (batch, )
141
+ NOTE(xcsong):
142
+ We pass the `__call__` method of the modules instead of `forward` to the
143
+ checkpointing API because `__call__` attaches all the hooks of the module.
144
+ https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
145
+ """
146
+ tgt = ys_in_pad
147
+ maxlen = tgt.size(1)
148
+ # tgt_mask: (B, 1, L)
149
+ tgt_mask = ~make_pad_mask(ys_in_lens, maxlen).unsqueeze(1)
150
+ tgt_mask = tgt_mask.to(tgt.device)
151
+ # m: (1, L, L)
152
+ m = subsequent_mask(tgt_mask.size(-1),
153
+ device=tgt_mask.device).unsqueeze(0)
154
+ # tgt_mask: (B, L, L)
155
+ tgt_mask = tgt_mask & m
156
+ x, _ = self.embed(tgt)
157
+ if self.gradient_checkpointing and self.training:
158
+ x = self.forward_layers_checkpointed(x, tgt_mask, memory,
159
+ memory_mask)
160
+ else:
161
+ x = self.forward_layers(x, tgt_mask, memory, memory_mask)
162
+ if self.normalize_before:
163
+ x = self.after_norm(x)
164
+ if self.use_output_layer:
165
+ x = self.output_layer(x)
166
+ olens = tgt_mask.sum(1)
167
+ return x, torch.tensor(0.0), olens
168
+
169
+ def forward_layers(self, x: torch.Tensor, tgt_mask: torch.Tensor,
170
+ memory: torch.Tensor,
171
+ memory_mask: torch.Tensor) -> torch.Tensor:
172
+ for layer in self.decoders:
173
+ x, tgt_mask, memory, memory_mask = layer(x, tgt_mask, memory,
174
+ memory_mask)
175
+ return x
176
+
177
+ @torch.jit.unused
178
+ def forward_layers_checkpointed(self, x: torch.Tensor,
179
+ tgt_mask: torch.Tensor,
180
+ memory: torch.Tensor,
181
+ memory_mask: torch.Tensor) -> torch.Tensor:
182
+ for layer in self.decoders:
183
+ x, tgt_mask, memory, memory_mask = ckpt.checkpoint(
184
+ layer.__call__, x, tgt_mask, memory, memory_mask)
185
+ return x
186
+
187
+ def forward_one_step(
188
+ self,
189
+ memory: torch.Tensor,
190
+ memory_mask: torch.Tensor,
191
+ tgt: torch.Tensor,
192
+ tgt_mask: torch.Tensor,
193
+ cache: Optional[List[torch.Tensor]] = None,
194
+ ) -> Tuple[torch.Tensor, List[torch.Tensor]]:
195
+ """Forward one step.
196
+ This is only used for decoding.
197
+ Args:
198
+ memory: encoded memory, float32 (batch, maxlen_in, feat)
199
+ memory_mask: encoded memory mask, (batch, 1, maxlen_in)
200
+ tgt: input token ids, int64 (batch, maxlen_out)
201
+ tgt_mask: input token mask, (batch, maxlen_out)
202
+ dtype=torch.uint8 in PyTorch 1.2-
203
+ dtype=torch.bool in PyTorch 1.2+ (include 1.2)
204
+ cache: cached output list of (batch, max_time_out-1, size)
205
+ Returns:
206
+ y, cache: NN output value and cache per `self.decoders`.
207
+ y.shape` is (batch, maxlen_out, token)
208
+ """
209
+ x, _ = self.embed(tgt)
210
+ new_cache = []
211
+ for i, decoder in enumerate(self.decoders):
212
+ if cache is None:
213
+ c = None
214
+ else:
215
+ c = cache[i]
216
+ x, tgt_mask, memory, memory_mask = decoder(x,
217
+ tgt_mask,
218
+ memory,
219
+ memory_mask,
220
+ cache=c)
221
+ new_cache.append(x)
222
+ if self.normalize_before:
223
+ y = self.after_norm(x[:, -1])
224
+ else:
225
+ y = x[:, -1]
226
+ if self.use_output_layer:
227
+ y = torch.log_softmax(self.output_layer(y), dim=-1)
228
+ return y, new_cache
229
+
230
+ def tie_or_clone_weights(self, jit_mode: bool = True):
231
+ """Tie or clone module weights (between word_emb and output_layer)
232
+ depending of whether we are using TorchScript or not"""
233
+ if not self.use_output_layer:
234
+ return
235
+ if jit_mode:
236
+ logging.info("clone emb.weight to output.weight")
237
+ self.output_layer.weight = torch.nn.Parameter(
238
+ self.embed[0].weight.clone())
239
+ else:
240
+ logging.info("tie emb.weight with output.weight")
241
+ self.output_layer.weight = self.embed[0].weight
242
+
243
+ if getattr(self.output_layer, "bias", None) is not None:
244
+ self.output_layer.bias.data = torch.nn.functional.pad(
245
+ self.output_layer.bias.data,
246
+ (
247
+ 0,
248
+ self.output_layer.weight.shape[0] -
249
+ self.output_layer.bias.shape[0],
250
+ ),
251
+ "constant",
252
+ 0,
253
+ )
254
+
255
+
256
+ class BiTransformerDecoder(torch.nn.Module):
257
+ """Base class of Transfomer decoder module.
258
+ Args:
259
+ vocab_size: output dim
260
+ encoder_output_size: dimension of attention
261
+ attention_heads: the number of heads of multi head attention
262
+ linear_units: the hidden units number of position-wise feedforward
263
+ num_blocks: the number of decoder blocks
264
+ r_num_blocks: the number of right to left decoder blocks
265
+ dropout_rate: dropout rate
266
+ self_attention_dropout_rate: dropout rate for attention
267
+ input_layer: input layer type
268
+ use_output_layer: whether to use output layer
269
+ pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
270
+ normalize_before:
271
+ True: use layer_norm before each sub-block of a layer.
272
+ False: use layer_norm after each sub-block of a layer.
273
+ key_bias: whether use bias in attention.linear_k, False for whisper models.
274
+ """
275
+
276
+ def __init__(
277
+ self,
278
+ vocab_size: int,
279
+ encoder_output_size: int,
280
+ attention_heads: int = 4,
281
+ linear_units: int = 2048,
282
+ num_blocks: int = 6,
283
+ r_num_blocks: int = 0,
284
+ dropout_rate: float = 0.1,
285
+ positional_dropout_rate: float = 0.1,
286
+ self_attention_dropout_rate: float = 0.0,
287
+ src_attention_dropout_rate: float = 0.0,
288
+ input_layer: str = "embed",
289
+ use_output_layer: bool = True,
290
+ normalize_before: bool = True,
291
+ key_bias: bool = True,
292
+ gradient_checkpointing: bool = False,
293
+ tie_word_embedding: bool = False,
294
+ ):
295
+
296
+ super().__init__()
297
+ self.tie_word_embedding = tie_word_embedding
298
+ self.left_decoder = TransformerDecoder(
299
+ vocab_size,
300
+ encoder_output_size,
301
+ attention_heads,
302
+ linear_units,
303
+ num_blocks,
304
+ dropout_rate,
305
+ positional_dropout_rate,
306
+ self_attention_dropout_rate,
307
+ src_attention_dropout_rate,
308
+ input_layer,
309
+ use_output_layer,
310
+ normalize_before,
311
+ key_bias=key_bias,
312
+ gradient_checkpointing=gradient_checkpointing,
313
+ tie_word_embedding=tie_word_embedding)
314
+
315
+ self.right_decoder = TransformerDecoder(
316
+ vocab_size,
317
+ encoder_output_size,
318
+ attention_heads,
319
+ linear_units,
320
+ r_num_blocks,
321
+ dropout_rate,
322
+ positional_dropout_rate,
323
+ self_attention_dropout_rate,
324
+ src_attention_dropout_rate,
325
+ input_layer,
326
+ use_output_layer,
327
+ normalize_before,
328
+ key_bias=key_bias,
329
+ gradient_checkpointing=gradient_checkpointing,
330
+ tie_word_embedding=tie_word_embedding)
331
+
332
+ def forward(
333
+ self,
334
+ memory: torch.Tensor,
335
+ memory_mask: torch.Tensor,
336
+ ys_in_pad: torch.Tensor,
337
+ ys_in_lens: torch.Tensor,
338
+ r_ys_in_pad: torch.Tensor,
339
+ reverse_weight: float = 0.0,
340
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
341
+ """Forward decoder.
342
+ Args:
343
+ memory: encoded memory, float32 (batch, maxlen_in, feat)
344
+ memory_mask: encoder memory mask, (batch, 1, maxlen_in)
345
+ ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
346
+ ys_in_lens: input lengths of this batch (batch)
347
+ r_ys_in_pad: padded input token ids, int64 (batch, maxlen_out),
348
+ used for right to left decoder
349
+ reverse_weight: used for right to left decoder
350
+ Returns:
351
+ (tuple): tuple containing:
352
+ x: decoded token score before softmax (batch, maxlen_out,
353
+ vocab_size) if use_output_layer is True,
354
+ r_x: x: decoded token score (right to left decoder)
355
+ before softmax (batch, maxlen_out, vocab_size)
356
+ if use_output_layer is True,
357
+ olens: (batch, )
358
+ """
359
+ l_x, _, olens = self.left_decoder(memory, memory_mask, ys_in_pad,
360
+ ys_in_lens)
361
+ r_x = torch.tensor(0.0)
362
+ if reverse_weight > 0.0:
363
+ r_x, _, olens = self.right_decoder(memory, memory_mask,
364
+ r_ys_in_pad, ys_in_lens)
365
+ return l_x, r_x, olens
366
+
367
+ def forward_one_step(
368
+ self,
369
+ memory: torch.Tensor,
370
+ memory_mask: torch.Tensor,
371
+ tgt: torch.Tensor,
372
+ tgt_mask: torch.Tensor,
373
+ cache: Optional[List[torch.Tensor]] = None,
374
+ ) -> Tuple[torch.Tensor, List[torch.Tensor]]:
375
+ """Forward one step.
376
+ This is only used for decoding.
377
+ Args:
378
+ memory: encoded memory, float32 (batch, maxlen_in, feat)
379
+ memory_mask: encoded memory mask, (batch, 1, maxlen_in)
380
+ tgt: input token ids, int64 (batch, maxlen_out)
381
+ tgt_mask: input token mask, (batch, maxlen_out)
382
+ dtype=torch.uint8 in PyTorch 1.2-
383
+ dtype=torch.bool in PyTorch 1.2+ (include 1.2)
384
+ cache: cached output list of (batch, max_time_out-1, size)
385
+ Returns:
386
+ y, cache: NN output value and cache per `self.decoders`.
387
+ y.shape` is (batch, maxlen_out, token)
388
+ """
389
+ return self.left_decoder.forward_one_step(memory, memory_mask, tgt,
390
+ tgt_mask, cache)
391
+
392
+ def tie_or_clone_weights(self, jit_mode: bool = True):
393
+ """Tie or clone module weights (between word_emb and output_layer)
394
+ depending of whether we are using TorchScript or not"""
395
+ self.left_decoder.tie_or_clone_weights(jit_mode)
396
+ self.right_decoder.tie_or_clone_weights(jit_mode)
inspiremusic/transformer/decoder_layer.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019 Shigeki Karita
2
+ # 2020 Mobvoi Inc (Binbin Zhang)
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Decoder self-attention layer definition."""
16
+ from typing import Optional, Tuple
17
+
18
+ import torch
19
+ from torch import nn
20
+
21
+
22
+ class DecoderLayer(nn.Module):
23
+ """Single decoder layer module.
24
+
25
+ Args:
26
+ size (int): Input dimension.
27
+ self_attn (torch.nn.Module): Self-attention module instance.
28
+ `MultiHeadedAttention` instance can be used as the argument.
29
+ src_attn (torch.nn.Module): Inter-attention module instance.
30
+ `MultiHeadedAttention` instance can be used as the argument.
31
+ If `None` is passed, Inter-attention is not used, such as
32
+ CIF, GPT, and other decoder only model.
33
+ feed_forward (torch.nn.Module): Feed-forward module instance.
34
+ `PositionwiseFeedForward` instance can be used as the argument.
35
+ dropout_rate (float): Dropout rate.
36
+ normalize_before (bool):
37
+ True: use layer_norm before each sub-block.
38
+ False: to use layer_norm after each sub-block.
39
+ """
40
+
41
+ def __init__(
42
+ self,
43
+ size: int,
44
+ self_attn: nn.Module,
45
+ src_attn: Optional[nn.Module],
46
+ feed_forward: nn.Module,
47
+ dropout_rate: float,
48
+ normalize_before: bool = True,
49
+ ):
50
+ """Construct an DecoderLayer object."""
51
+ super().__init__()
52
+ self.size = size
53
+ self.self_attn = self_attn
54
+ self.src_attn = src_attn
55
+ self.feed_forward = feed_forward
56
+ self.norm1 = nn.LayerNorm(size, eps=1e-5)
57
+ self.norm2 = nn.LayerNorm(size, eps=1e-5)
58
+ self.norm3 = nn.LayerNorm(size, eps=1e-5)
59
+ self.dropout = nn.Dropout(dropout_rate)
60
+ self.normalize_before = normalize_before
61
+
62
+ def forward(
63
+ self,
64
+ tgt: torch.Tensor,
65
+ tgt_mask: torch.Tensor,
66
+ memory: torch.Tensor,
67
+ memory_mask: torch.Tensor,
68
+ cache: Optional[torch.Tensor] = None
69
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
70
+ """Compute decoded features.
71
+
72
+ Args:
73
+ tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
74
+ tgt_mask (torch.Tensor): Mask for input tensor
75
+ (#batch, maxlen_out).
76
+ memory (torch.Tensor): Encoded memory
77
+ (#batch, maxlen_in, size).
78
+ memory_mask (torch.Tensor): Encoded memory mask
79
+ (#batch, maxlen_in).
80
+ cache (torch.Tensor): cached tensors.
81
+ (#batch, maxlen_out - 1, size).
82
+
83
+ Returns:
84
+ torch.Tensor: Output tensor (#batch, maxlen_out, size).
85
+ torch.Tensor: Mask for output tensor (#batch, maxlen_out).
86
+ torch.Tensor: Encoded memory (#batch, maxlen_in, size).
87
+ torch.Tensor: Encoded memory mask (#batch, maxlen_in).
88
+
89
+ """
90
+ residual = tgt
91
+ if self.normalize_before:
92
+ tgt = self.norm1(tgt)
93
+
94
+ if cache is None:
95
+ tgt_q = tgt
96
+ tgt_q_mask = tgt_mask
97
+ else:
98
+ # compute only the last frame query keeping dim: max_time_out -> 1
99
+ assert cache.shape == (
100
+ tgt.shape[0],
101
+ tgt.shape[1] - 1,
102
+ self.size,
103
+ ), "{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}"
104
+ tgt_q = tgt[:, -1:, :]
105
+ residual = residual[:, -1:, :]
106
+ tgt_q_mask = tgt_mask[:, -1:, :]
107
+
108
+ x = residual + self.dropout(
109
+ self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)[0])
110
+ if not self.normalize_before:
111
+ x = self.norm1(x)
112
+
113
+ if self.src_attn is not None:
114
+ residual = x
115
+ if self.normalize_before:
116
+ x = self.norm2(x)
117
+ x = residual + self.dropout(
118
+ self.src_attn(x, memory, memory, memory_mask)[0])
119
+ if not self.normalize_before:
120
+ x = self.norm2(x)
121
+
122
+ residual = x
123
+ if self.normalize_before:
124
+ x = self.norm3(x)
125
+ x = residual + self.dropout(self.feed_forward(x))
126
+ if not self.normalize_before:
127
+ x = self.norm3(x)
128
+
129
+ if cache is not None:
130
+ x = torch.cat([cache, x], dim=1)
131
+
132
+ return x, tgt_mask, memory, memory_mask
inspiremusic/transformer/embedding.py ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
2
+ # 2024 Alibaba Inc (Xiang Lyu)
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # Modified from ESPnet(https://github.com/espnet/espnet)
16
+ """Positonal Encoding Module."""
17
+
18
+ import math
19
+ from typing import Tuple, Union
20
+
21
+ import torch
22
+ import torch.nn.functional as F
23
+ import numpy as np
24
+
25
+
26
+ class PositionalEncoding(torch.nn.Module):
27
+ """Positional encoding.
28
+
29
+ :param int d_model: embedding dim
30
+ :param float dropout_rate: dropout rate
31
+ :param int max_len: maximum input length
32
+
33
+ PE(pos, 2i) = sin(pos/(10000^(2i/dmodel)))
34
+ PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel)))
35
+ """
36
+
37
+ def __init__(self,
38
+ d_model: int,
39
+ dropout_rate: float,
40
+ max_len: int = 5000,
41
+ reverse: bool = False):
42
+ """Construct an PositionalEncoding object."""
43
+ super().__init__()
44
+ self.d_model = d_model
45
+ self.xscale = math.sqrt(self.d_model)
46
+ self.dropout = torch.nn.Dropout(p=dropout_rate)
47
+ self.max_len = max_len
48
+
49
+ self.pe = torch.zeros(self.max_len, self.d_model)
50
+ position = torch.arange(0, self.max_len,
51
+ dtype=torch.float32).unsqueeze(1)
52
+ div_term = torch.exp(
53
+ torch.arange(0, self.d_model, 2, dtype=torch.float32) *
54
+ -(math.log(10000.0) / self.d_model))
55
+ self.pe[:, 0::2] = torch.sin(position * div_term)
56
+ self.pe[:, 1::2] = torch.cos(position * div_term)
57
+ self.pe = self.pe.unsqueeze(0)
58
+
59
+ def forward(self,
60
+ x: torch.Tensor,
61
+ offset: Union[int, torch.Tensor] = 0) \
62
+ -> Tuple[torch.Tensor, torch.Tensor]:
63
+ """Add positional encoding.
64
+
65
+ Args:
66
+ x (torch.Tensor): Input. Its shape is (batch, time, ...)
67
+ offset (int, torch.tensor): position offset
68
+
69
+ Returns:
70
+ torch.Tensor: Encoded tensor. Its shape is (batch, time, ...)
71
+ torch.Tensor: for compatibility to RelPositionalEncoding
72
+ """
73
+
74
+ self.pe = self.pe.to(x.device)
75
+ pos_emb = self.position_encoding(offset, x.size(1), False)
76
+ x = x * self.xscale + pos_emb
77
+ return self.dropout(x), self.dropout(pos_emb)
78
+
79
+ def position_encoding(self,
80
+ offset: Union[int, torch.Tensor],
81
+ size: int,
82
+ apply_dropout: bool = True) -> torch.Tensor:
83
+ """ For getting encoding in a streaming fashion
84
+
85
+ Attention!!!!!
86
+ we apply dropout only once at the whole utterance level in a none
87
+ streaming way, but will call this function several times with
88
+ increasing input size in a streaming scenario, so the dropout will
89
+ be applied several times.
90
+
91
+ Args:
92
+ offset (int or torch.tensor): start offset
93
+ size (int): required size of position encoding
94
+
95
+ Returns:
96
+ torch.Tensor: Corresponding encoding
97
+ """
98
+ # How to subscript a Union type:
99
+ # https://github.com/pytorch/pytorch/issues/69434
100
+ if isinstance(offset, int):
101
+ assert offset + size <= self.max_len
102
+ pos_emb = self.pe[:, offset:offset + size]
103
+ elif isinstance(offset, torch.Tensor) and offset.dim() == 0: # scalar
104
+ assert offset + size <= self.max_len
105
+ pos_emb = self.pe[:, offset:offset + size]
106
+ else: # for batched streaming decoding on GPU
107
+ assert torch.max(offset) + size <= self.max_len
108
+ index = offset.unsqueeze(1) + \
109
+ torch.arange(0, size).to(offset.device) # B X T
110
+ flag = index > 0
111
+ # remove negative offset
112
+ index = index * flag
113
+ pos_emb = F.embedding(index, self.pe[0]) # B X T X d_model
114
+
115
+ if apply_dropout:
116
+ pos_emb = self.dropout(pos_emb)
117
+ return pos_emb
118
+
119
+
120
+ class RelPositionalEncoding(PositionalEncoding):
121
+ """Relative positional encoding module.
122
+ See : Appendix B in https://arxiv.org/abs/1901.02860
123
+ Args:
124
+ d_model (int): Embedding dimension.
125
+ dropout_rate (float): Dropout rate.
126
+ max_len (int): Maximum input length.
127
+ """
128
+
129
+ def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000):
130
+ """Initialize class."""
131
+ super().__init__(d_model, dropout_rate, max_len, reverse=True)
132
+
133
+ def forward(self,
134
+ x: torch.Tensor,
135
+ offset: Union[int, torch.Tensor] = 0) \
136
+ -> Tuple[torch.Tensor, torch.Tensor]:
137
+ """Compute positional encoding.
138
+ Args:
139
+ x (torch.Tensor): Input tensor (batch, time, `*`).
140
+ Returns:
141
+ torch.Tensor: Encoded tensor (batch, time, `*`).
142
+ torch.Tensor: Positional embedding tensor (1, time, `*`).
143
+ """
144
+ self.pe = self.pe.to(x.device)
145
+ x = x * self.xscale
146
+ pos_emb = self.position_encoding(offset, x.size(1), False)
147
+ return self.dropout(x), self.dropout(pos_emb)
148
+
149
+
150
+ class WhisperPositionalEncoding(PositionalEncoding):
151
+ """ Sinusoids position encoding used in openai-whisper.encoder
152
+ """
153
+
154
+ def __init__(self, d_model: int, dropout_rate: float, max_len: int = 1500):
155
+ super().__init__(d_model, dropout_rate, max_len)
156
+ self.xscale = 1.0
157
+ log_timescale_increment = np.log(10000) / (d_model // 2 - 1)
158
+ inv_timescales = torch.exp(-log_timescale_increment *
159
+ torch.arange(d_model // 2))
160
+ scaled_time = torch.arange(max_len)[:, np.newaxis] * \
161
+ inv_timescales[np.newaxis, :]
162
+ pe = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
163
+ delattr(self, "pe")
164
+ self.register_buffer("pe", pe.unsqueeze(0))
165
+
166
+
167
+ class LearnablePositionalEncoding(PositionalEncoding):
168
+ """ Learnable position encoding used in openai-whisper.decoder
169
+ """
170
+
171
+ def __init__(self, d_model: int, dropout_rate: float, max_len: int = 448):
172
+ super().__init__(d_model, dropout_rate, max_len)
173
+ # NOTE(xcsong): overwrite self.pe & self.xscale
174
+ self.pe = torch.nn.Parameter(torch.empty(1, max_len, d_model))
175
+ self.xscale = 1.0
176
+
177
+
178
+ class NoPositionalEncoding(torch.nn.Module):
179
+ """ No position encoding
180
+ """
181
+
182
+ def __init__(self, d_model: int, dropout_rate: float):
183
+ super().__init__()
184
+ self.d_model = d_model
185
+ self.dropout = torch.nn.Dropout(p=dropout_rate)
186
+
187
+ def forward(self,
188
+ x: torch.Tensor,
189
+ offset: Union[int, torch.Tensor] = 0) \
190
+ -> Tuple[torch.Tensor, torch.Tensor]:
191
+ """ Just return zero vector for interface compatibility
192
+ """
193
+ pos_emb = torch.zeros(1, x.size(1), self.d_model).to(x.device)
194
+ return self.dropout(x), pos_emb
195
+
196
+ def position_encoding(self, offset: Union[int, torch.Tensor],
197
+ size: int) -> torch.Tensor:
198
+ return torch.zeros(1, size, self.d_model)
199
+
200
+
201
+ class EspnetRelPositionalEncoding(torch.nn.Module):
202
+ """Relative positional encoding module (new implementation).
203
+
204
+ Details can be found in https://github.com/espnet/espnet/pull/2816.
205
+
206
+ See : Appendix B in https://arxiv.org/abs/1901.02860
207
+
208
+ Args:
209
+ d_model (int): Embedding dimension.
210
+ dropout_rate (float): Dropout rate.
211
+ max_len (int): Maximum input length.
212
+
213
+ """
214
+
215
+ def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000):
216
+ """Construct an PositionalEncoding object."""
217
+ super(EspnetRelPositionalEncoding, self).__init__()
218
+ self.d_model = d_model
219
+ self.xscale = math.sqrt(self.d_model)
220
+ self.dropout = torch.nn.Dropout(p=dropout_rate)
221
+ self.pe = None
222
+ self.extend_pe(torch.tensor(0.0).expand(1, max_len))
223
+
224
+ def extend_pe(self, x: torch.Tensor):
225
+ """Reset the positional encodings."""
226
+ if self.pe is not None:
227
+ # self.pe contains both positive and negative parts
228
+ # the length of self.pe is 2 * input_len - 1
229
+ if self.pe.size(1) >= x.size(1) * 2 - 1:
230
+ if self.pe.dtype != x.dtype or self.pe.device != x.device:
231
+ self.pe = self.pe.to(dtype=x.dtype, device=x.device)
232
+ return
233
+ # Suppose `i` means to the position of query vecotr and `j` means the
234
+ # position of key vector. We use position relative positions when keys
235
+ # are to the left (i>j) and negative relative positions otherwise (i<j).
236
+ pe_positive = torch.zeros(x.size(1), self.d_model)
237
+ pe_negative = torch.zeros(x.size(1), self.d_model)
238
+ position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
239
+ div_term = torch.exp(
240
+ torch.arange(0, self.d_model, 2, dtype=torch.float32)
241
+ * -(math.log(10000.0) / self.d_model)
242
+ )
243
+ pe_positive[:, 0::2] = torch.sin(position * div_term)
244
+ pe_positive[:, 1::2] = torch.cos(position * div_term)
245
+ pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
246
+ pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
247
+
248
+ # Reserve the order of positive indices and concat both positive and
249
+ # negative indices. This is used to support the shifting trick
250
+ # as in https://arxiv.org/abs/1901.02860
251
+ pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
252
+ pe_negative = pe_negative[1:].unsqueeze(0)
253
+ pe = torch.cat([pe_positive, pe_negative], dim=1)
254
+ self.pe = pe.to(device=x.device, dtype=x.dtype)
255
+
256
+ def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0) \
257
+ -> Tuple[torch.Tensor, torch.Tensor]:
258
+ """Add positional encoding.
259
+
260
+ Args:
261
+ x (torch.Tensor): Input tensor (batch, time, `*`).
262
+
263
+ Returns:
264
+ torch.Tensor: Encoded tensor (batch, time, `*`).
265
+
266
+ """
267
+ self.extend_pe(x)
268
+ x = x * self.xscale
269
+ pos_emb = self.position_encoding(size=x.size(1), offset=offset)
270
+ return self.dropout(x), self.dropout(pos_emb)
271
+
272
+ def position_encoding(self,
273
+ offset: Union[int, torch.Tensor],
274
+ size: int) -> torch.Tensor:
275
+ """ For getting encoding in a streaming fashion
276
+
277
+ Attention!!!!!
278
+ we apply dropout only once at the whole utterance level in a none
279
+ streaming way, but will call this function several times with
280
+ increasing input size in a streaming scenario, so the dropout will
281
+ be applied several times.
282
+
283
+ Args:
284
+ offset (int or torch.tensor): start offset
285
+ size (int): required size of position encoding
286
+
287
+ Returns:
288
+ torch.Tensor: Corresponding encoding
289
+ """
290
+ pos_emb = self.pe[
291
+ :,
292
+ self.pe.size(1) // 2 - size + 1: self.pe.size(1) // 2 + size,
293
+ ]
294
+ return pos_emb
inspiremusic/transformer/encoder.py ADDED
@@ -0,0 +1,477 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
2
+ # 2022 Xingchen Song ([email protected])
3
+ # 2024 Alibaba Inc (Xiang Lyu)
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ # Modified from ESPnet(https://github.com/espnet/espnet)
17
+ """Encoder definition."""
18
+ from typing import Tuple
19
+
20
+ import torch
21
+ import torch.utils.checkpoint as ckpt
22
+
23
+ from inspiremusic.transformer.convolution import ConvolutionModule
24
+ from inspiremusic.transformer.encoder_layer import TransformerEncoderLayer
25
+ from inspiremusic.transformer.encoder_layer import ConformerEncoderLayer
26
+ from inspiremusic.transformer.positionwise_feed_forward import PositionwiseFeedForward
27
+ from inspiremusic.utils.class_utils import (
28
+ INSPIREMUSIC_EMB_CLASSES,
29
+ INSPIREMUSIC_SUBSAMPLE_CLASSES,
30
+ INSPIREMUSIC_ATTENTION_CLASSES,
31
+ INSPIREMUSIC_ACTIVATION_CLASSES,
32
+ )
33
+ from inspiremusic.utils.mask import make_pad_mask
34
+ from inspiremusic.utils.mask import add_optional_chunk_mask
35
+
36
+
37
+ class BaseEncoder(torch.nn.Module):
38
+
39
+ def __init__(
40
+ self,
41
+ input_size: int,
42
+ output_size: int = 256,
43
+ attention_heads: int = 4,
44
+ linear_units: int = 2048,
45
+ num_blocks: int = 6,
46
+ dropout_rate: float = 0.1,
47
+ positional_dropout_rate: float = 0.1,
48
+ attention_dropout_rate: float = 0.0,
49
+ input_layer: str = "conv2d",
50
+ pos_enc_layer_type: str = "abs_pos",
51
+ normalize_before: bool = True,
52
+ static_chunk_size: int = 0,
53
+ use_dynamic_chunk: bool = False,
54
+ global_cmvn: torch.nn.Module = None,
55
+ use_dynamic_left_chunk: bool = False,
56
+ gradient_checkpointing: bool = False,
57
+ ):
58
+ """
59
+ Args:
60
+ input_size (int): input dim
61
+ output_size (int): dimension of attention
62
+ attention_heads (int): the number of heads of multi head attention
63
+ linear_units (int): the hidden units number of position-wise feed
64
+ forward
65
+ num_blocks (int): the number of decoder blocks
66
+ dropout_rate (float): dropout rate
67
+ attention_dropout_rate (float): dropout rate in attention
68
+ positional_dropout_rate (float): dropout rate after adding
69
+ positional encoding
70
+ input_layer (str): input layer type.
71
+ optional [linear, conv2d, conv2d6, conv2d8]
72
+ pos_enc_layer_type (str): Encoder positional encoding layer type.
73
+ opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
74
+ normalize_before (bool):
75
+ True: use layer_norm before each sub-block of a layer.
76
+ False: use layer_norm after each sub-block of a layer.
77
+ static_chunk_size (int): chunk size for static chunk training and
78
+ decoding
79
+ use_dynamic_chunk (bool): whether use dynamic chunk size for
80
+ training or not, You can only use fixed chunk(chunk_size > 0)
81
+ or dyanmic chunk size(use_dynamic_chunk = True)
82
+ global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
83
+ use_dynamic_left_chunk (bool): whether use dynamic left chunk in
84
+ dynamic chunk training
85
+ key_bias: whether use bias in attention.linear_k, False for whisper models.
86
+ gradient_checkpointing: rerunning a forward-pass segment for each
87
+ checkpointed segment during backward.
88
+ """
89
+ super().__init__()
90
+ self._output_size = output_size
91
+
92
+ self.global_cmvn = global_cmvn
93
+ self.embed = INSPIREMUSIC_SUBSAMPLE_CLASSES[input_layer](
94
+ input_size,
95
+ output_size,
96
+ dropout_rate,
97
+ INSPIREMUSIC_EMB_CLASSES[pos_enc_layer_type](output_size,
98
+ positional_dropout_rate),
99
+ )
100
+
101
+ self.normalize_before = normalize_before
102
+ self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)
103
+ self.static_chunk_size = static_chunk_size
104
+ self.use_dynamic_chunk = use_dynamic_chunk
105
+ self.use_dynamic_left_chunk = use_dynamic_left_chunk
106
+ self.gradient_checkpointing = gradient_checkpointing
107
+
108
+ def output_size(self) -> int:
109
+ return self._output_size
110
+
111
+ def forward(
112
+ self,
113
+ xs: torch.Tensor,
114
+ xs_lens: torch.Tensor,
115
+ decoding_chunk_size: int = 0,
116
+ num_decoding_left_chunks: int = -1,
117
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
118
+ """Embed positions in tensor.
119
+
120
+ Args:
121
+ xs: padded input tensor (B, T, D)
122
+ xs_lens: input length (B)
123
+ decoding_chunk_size: decoding chunk size for dynamic chunk
124
+ 0: default for training, use random dynamic chunk.
125
+ <0: for decoding, use full chunk.
126
+ >0: for decoding, use fixed chunk size as set.
127
+ num_decoding_left_chunks: number of left chunks, this is for decoding,
128
+ the chunk size is decoding_chunk_size.
129
+ >=0: use num_decoding_left_chunks
130
+ <0: use all left chunks
131
+ Returns:
132
+ encoder output tensor xs, and subsampled masks
133
+ xs: padded output tensor (B, T' ~= T/subsample_rate, D)
134
+ masks: torch.Tensor batch padding mask after subsample
135
+ (B, 1, T' ~= T/subsample_rate)
136
+ NOTE(xcsong):
137
+ We pass the `__call__` method of the modules instead of `forward` to the
138
+ checkpointing API because `__call__` attaches all the hooks of the module.
139
+ https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
140
+ """
141
+ T = xs.size(1)
142
+ masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
143
+ if self.global_cmvn is not None:
144
+ xs = self.global_cmvn(xs)
145
+ xs, pos_emb, masks = self.embed(xs, masks)
146
+ mask_pad = masks # (B, 1, T/subsample_rate)
147
+ chunk_masks = add_optional_chunk_mask(xs, masks,
148
+ self.use_dynamic_chunk,
149
+ self.use_dynamic_left_chunk,
150
+ decoding_chunk_size,
151
+ self.static_chunk_size,
152
+ num_decoding_left_chunks)
153
+
154
+ if self.gradient_checkpointing and self.training:
155
+ xs = self.forward_layers_checkpointed(xs, chunk_masks, pos_emb,
156
+ mask_pad)
157
+ else:
158
+ xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
159
+ if self.normalize_before:
160
+ xs = self.after_norm(xs)
161
+ # Here we assume the mask is not changed in encoder layers, so just
162
+ # return the masks before encoder layers, and the masks will be used
163
+ # for cross attention with decoder later
164
+ return xs, masks
165
+
166
+ def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
167
+ pos_emb: torch.Tensor,
168
+ mask_pad: torch.Tensor) -> torch.Tensor:
169
+ for layer in self.encoders:
170
+ xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
171
+ return xs
172
+
173
+ @torch.jit.unused
174
+ def forward_layers_checkpointed(self, xs: torch.Tensor,
175
+ chunk_masks: torch.Tensor,
176
+ pos_emb: torch.Tensor,
177
+ mask_pad: torch.Tensor) -> torch.Tensor:
178
+ for layer in self.encoders:
179
+ xs, chunk_masks, _, _ = ckpt.checkpoint(layer.__call__, xs,
180
+ chunk_masks, pos_emb,
181
+ mask_pad)
182
+ return xs
183
+
184
+ @torch.jit.export
185
+ def forward_chunk(
186
+ self,
187
+ xs: torch.Tensor,
188
+ offset: int,
189
+ required_cache_size: int,
190
+ att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
191
+ cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
192
+ att_mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
193
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
194
+ """ Forward just one chunk
195
+
196
+ Args:
197
+ xs (torch.Tensor): chunk input, with shape (b=1, time, mel-dim),
198
+ where `time == (chunk_size - 1) * subsample_rate + \
199
+ subsample.right_context + 1`
200
+ offset (int): current offset in encoder output time stamp
201
+ required_cache_size (int): cache size required for next chunk
202
+ compuation
203
+ >=0: actual cache size
204
+ <0: means all history cache is required
205
+ att_cache (torch.Tensor): cache tensor for KEY & VALUE in
206
+ transformer/conformer attention, with shape
207
+ (elayers, head, cache_t1, d_k * 2), where
208
+ `head * d_k == hidden-dim` and
209
+ `cache_t1 == chunk_size * num_decoding_left_chunks`.
210
+ cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer,
211
+ (elayers, b=1, hidden-dim, cache_t2), where
212
+ `cache_t2 == cnn.lorder - 1`
213
+
214
+ Returns:
215
+ torch.Tensor: output of current input xs,
216
+ with shape (b=1, chunk_size, hidden-dim).
217
+ torch.Tensor: new attention cache required for next chunk, with
218
+ dynamic shape (elayers, head, ?, d_k * 2)
219
+ depending on required_cache_size.
220
+ torch.Tensor: new conformer cnn cache required for next chunk, with
221
+ same shape as the original cnn_cache.
222
+
223
+ """
224
+ assert xs.size(0) == 1
225
+ # tmp_masks is just for interface compatibility
226
+ tmp_masks = torch.ones(1,
227
+ xs.size(1),
228
+ device=xs.device,
229
+ dtype=torch.bool)
230
+ tmp_masks = tmp_masks.unsqueeze(1)
231
+ if self.global_cmvn is not None:
232
+ xs = self.global_cmvn(xs)
233
+ # NOTE(xcsong): Before embed, shape(xs) is (b=1, time, mel-dim)
234
+
235
+ xs, pos_emb, _ = self.embed(xs, tmp_masks, offset)
236
+ # NOTE(xcsong): After embed, shape(xs) is (b=1, chunk_size, hidden-dim)
237
+ elayers, cache_t1 = att_cache.size(0), att_cache.size(2)
238
+ chunk_size = xs.size(1)
239
+ attention_key_size = cache_t1 + chunk_size
240
+ pos_emb = self.embed.position_encoding(offset=offset - cache_t1,
241
+ size=attention_key_size)
242
+ if required_cache_size < 0:
243
+ next_cache_start = 0
244
+ elif required_cache_size == 0:
245
+ next_cache_start = attention_key_size
246
+ else:
247
+ next_cache_start = max(attention_key_size - required_cache_size, 0)
248
+ r_att_cache = []
249
+ r_cnn_cache = []
250
+ for i, layer in enumerate(self.encoders):
251
+ # NOTE(xcsong): Before layer.forward
252
+ # shape(att_cache[i:i + 1]) is (1, head, cache_t1, d_k * 2),
253
+ # shape(cnn_cache[i]) is (b=1, hidden-dim, cache_t2)
254
+
255
+ xs, _, new_att_cache, new_cnn_cache = layer(
256
+ xs,
257
+ att_mask,
258
+ pos_emb,
259
+ att_cache=att_cache[i:i + 1] if elayers > 0 else att_cache,
260
+ cnn_cache=cnn_cache[i] if cnn_cache.size(0) > 0 else cnn_cache)
261
+ # NOTE(xcsong): After layer.forward
262
+ # shape(new_att_cache) is (1, head, attention_key_size, d_k * 2),
263
+ # shape(new_cnn_cache) is (b=1, hidden-dim, cache_t2)
264
+ r_att_cache.append(new_att_cache[:, :, next_cache_start:, :])
265
+ r_cnn_cache.append(new_cnn_cache.unsqueeze(0))
266
+ if self.normalize_before:
267
+ xs = self.after_norm(xs)
268
+
269
+ # NOTE(xcsong): shape(r_att_cache) is (elayers, head, ?, d_k * 2),
270
+ # ? may be larger than cache_t1, it depends on required_cache_size
271
+ r_att_cache = torch.cat(r_att_cache, dim=0)
272
+ # NOTE(xcsong): shape(r_cnn_cache) is (e, b=1, hidden-dim, cache_t2)
273
+ r_cnn_cache = torch.cat(r_cnn_cache, dim=0)
274
+
275
+ return (xs, r_att_cache, r_cnn_cache)
276
+
277
+ @torch.jit.unused
278
+ def forward_chunk_by_chunk(
279
+ self,
280
+ xs: torch.Tensor,
281
+ decoding_chunk_size: int,
282
+ num_decoding_left_chunks: int = -1,
283
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
284
+ """ Forward input chunk by chunk with chunk_size like a streaming
285
+ fashion
286
+
287
+ Here we should pay special attention to computation cache in the
288
+ streaming style forward chunk by chunk. Three things should be taken
289
+ into account for computation in the current network:
290
+ 1. transformer/conformer encoder layers output cache
291
+ 2. convolution in conformer
292
+ 3. convolution in subsampling
293
+
294
+ However, we don't implement subsampling cache for:
295
+ 1. We can control subsampling module to output the right result by
296
+ overlapping input instead of cache left context, even though it
297
+ wastes some computation, but subsampling only takes a very
298
+ small fraction of computation in the whole model.
299
+ 2. Typically, there are several covolution layers with subsampling
300
+ in subsampling module, it is tricky and complicated to do cache
301
+ with different convolution layers with different subsampling
302
+ rate.
303
+ 3. Currently, nn.Sequential is used to stack all the convolution
304
+ layers in subsampling, we need to rewrite it to make it work
305
+ with cache, which is not preferred.
306
+ Args:
307
+ xs (torch.Tensor): (1, max_len, dim)
308
+ chunk_size (int): decoding chunk size
309
+ """
310
+ assert decoding_chunk_size > 0
311
+ # The model is trained by static or dynamic chunk
312
+ assert self.static_chunk_size > 0 or self.use_dynamic_chunk
313
+ subsampling = self.embed.subsampling_rate
314
+ context = self.embed.right_context + 1 # Add current frame
315
+ stride = subsampling * decoding_chunk_size
316
+ decoding_window = (decoding_chunk_size - 1) * subsampling + context
317
+ num_frames = xs.size(1)
318
+ att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
319
+ cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
320
+ outputs = []
321
+ offset = 0
322
+ required_cache_size = decoding_chunk_size * num_decoding_left_chunks
323
+
324
+ # Feed forward overlap input step by step
325
+ for cur in range(0, num_frames - context + 1, stride):
326
+ end = min(cur + decoding_window, num_frames)
327
+ chunk_xs = xs[:, cur:end, :]
328
+ (y, att_cache,
329
+ cnn_cache) = self.forward_chunk(chunk_xs, offset,
330
+ required_cache_size, att_cache,
331
+ cnn_cache)
332
+ outputs.append(y)
333
+ offset += y.size(1)
334
+ ys = torch.cat(outputs, 1)
335
+ masks = torch.ones((1, 1, ys.size(1)),
336
+ device=ys.device,
337
+ dtype=torch.bool)
338
+ return ys, masks
339
+
340
+
341
+ class TransformerEncoder(BaseEncoder):
342
+ """Transformer encoder module."""
343
+
344
+ def __init__(
345
+ self,
346
+ input_size: int,
347
+ output_size: int = 256,
348
+ attention_heads: int = 4,
349
+ linear_units: int = 2048,
350
+ num_blocks: int = 6,
351
+ dropout_rate: float = 0.1,
352
+ positional_dropout_rate: float = 0.1,
353
+ attention_dropout_rate: float = 0.0,
354
+ input_layer: str = "conv2d",
355
+ pos_enc_layer_type: str = "abs_pos",
356
+ normalize_before: bool = True,
357
+ static_chunk_size: int = 0,
358
+ use_dynamic_chunk: bool = False,
359
+ global_cmvn: torch.nn.Module = None,
360
+ use_dynamic_left_chunk: bool = False,
361
+ key_bias: bool = True,
362
+ selfattention_layer_type: str = "selfattn",
363
+ activation_type: str = "relu",
364
+ gradient_checkpointing: bool = False,
365
+ ):
366
+ """ Construct TransformerEncoder
367
+
368
+ See Encoder for the meaning of each parameter.
369
+ """
370
+ super().__init__(input_size, output_size, attention_heads,
371
+ linear_units, num_blocks, dropout_rate,
372
+ positional_dropout_rate, attention_dropout_rate,
373
+ input_layer, pos_enc_layer_type, normalize_before,
374
+ static_chunk_size, use_dynamic_chunk, global_cmvn,
375
+ use_dynamic_left_chunk, gradient_checkpointing)
376
+ activation = INSPIREMUSIC_ACTIVATION_CLASSES[activation_type]()
377
+ self.encoders = torch.nn.ModuleList([
378
+ TransformerEncoderLayer(
379
+ output_size,
380
+ INSPIREMUSIC_ATTENTION_CLASSES[selfattention_layer_type](attention_heads,
381
+ output_size,
382
+ attention_dropout_rate,
383
+ key_bias),
384
+ PositionwiseFeedForward(output_size, linear_units,
385
+ dropout_rate, activation),
386
+ dropout_rate, normalize_before) for _ in range(num_blocks)
387
+ ])
388
+
389
+
390
+ class ConformerEncoder(BaseEncoder):
391
+ """Conformer encoder module."""
392
+
393
+ def __init__(
394
+ self,
395
+ input_size: int,
396
+ output_size: int = 256,
397
+ attention_heads: int = 4,
398
+ linear_units: int = 2048,
399
+ num_blocks: int = 6,
400
+ dropout_rate: float = 0.1,
401
+ positional_dropout_rate: float = 0.1,
402
+ attention_dropout_rate: float = 0.0,
403
+ input_layer: str = "conv2d",
404
+ pos_enc_layer_type: str = "rel_pos",
405
+ normalize_before: bool = True,
406
+ static_chunk_size: int = 0,
407
+ use_dynamic_chunk: bool = False,
408
+ global_cmvn: torch.nn.Module = None,
409
+ use_dynamic_left_chunk: bool = False,
410
+ positionwise_conv_kernel_size: int = 1,
411
+ macaron_style: bool = True,
412
+ selfattention_layer_type: str = "rel_selfattn",
413
+ activation_type: str = "swish",
414
+ use_cnn_module: bool = True,
415
+ cnn_module_kernel: int = 15,
416
+ causal: bool = False,
417
+ cnn_module_norm: str = "batch_norm",
418
+ key_bias: bool = True,
419
+ gradient_checkpointing: bool = False,
420
+ ):
421
+ """Construct ConformerEncoder
422
+
423
+ Args:
424
+ input_size to use_dynamic_chunk, see in BaseEncoder
425
+ positionwise_conv_kernel_size (int): Kernel size of positionwise
426
+ conv1d layer.
427
+ macaron_style (bool): Whether to use macaron style for
428
+ positionwise layer.
429
+ selfattention_layer_type (str): Encoder attention layer type,
430
+ the parameter has no effect now, it's just for configure
431
+ compatibility.
432
+ activation_type (str): Encoder activation function type.
433
+ use_cnn_module (bool): Whether to use convolution module.
434
+ cnn_module_kernel (int): Kernel size of convolution module.
435
+ causal (bool): whether to use causal convolution or not.
436
+ key_bias: whether use bias in attention.linear_k, False for whisper models.
437
+ """
438
+ super().__init__(input_size, output_size, attention_heads,
439
+ linear_units, num_blocks, dropout_rate,
440
+ positional_dropout_rate, attention_dropout_rate,
441
+ input_layer, pos_enc_layer_type, normalize_before,
442
+ static_chunk_size, use_dynamic_chunk, global_cmvn,
443
+ use_dynamic_left_chunk, gradient_checkpointing)
444
+ activation = INSPIREMUSIC_ACTIVATION_CLASSES[activation_type]()
445
+
446
+ # self-attention module definition
447
+ encoder_selfattn_layer_args = (
448
+ attention_heads,
449
+ output_size,
450
+ attention_dropout_rate,
451
+ key_bias,
452
+ )
453
+ # feed-forward module definition
454
+ positionwise_layer_args = (
455
+ output_size,
456
+ linear_units,
457
+ dropout_rate,
458
+ activation,
459
+ )
460
+ # convolution module definition
461
+ convolution_layer_args = (output_size, cnn_module_kernel, activation,
462
+ cnn_module_norm, causal)
463
+
464
+ self.encoders = torch.nn.ModuleList([
465
+ ConformerEncoderLayer(
466
+ output_size,
467
+ INSPIREMUSIC_ATTENTION_CLASSES[selfattention_layer_type](
468
+ *encoder_selfattn_layer_args),
469
+ PositionwiseFeedForward(*positionwise_layer_args),
470
+ PositionwiseFeedForward(
471
+ *positionwise_layer_args) if macaron_style else None,
472
+ ConvolutionModule(
473
+ *convolution_layer_args) if use_cnn_module else None,
474
+ dropout_rate,
475
+ normalize_before,
476
+ ) for _ in range(num_blocks)
477
+ ])
inspiremusic/transformer/encoder_layer.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
2
+ # 2022 Xingchen Song ([email protected])
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # Modified from ESPnet(https://github.com/espnet/espnet)
16
+ """Encoder self-attention layer definition."""
17
+
18
+ from typing import Optional, Tuple
19
+
20
+ import torch
21
+ from torch import nn
22
+
23
+
24
+ class TransformerEncoderLayer(nn.Module):
25
+ """Encoder layer module.
26
+
27
+ Args:
28
+ size (int): Input dimension.
29
+ self_attn (torch.nn.Module): Self-attention module instance.
30
+ `MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
31
+ instance can be used as the argument.
32
+ feed_forward (torch.nn.Module): Feed-forward module instance.
33
+ `PositionwiseFeedForward`, instance can be used as the argument.
34
+ dropout_rate (float): Dropout rate.
35
+ normalize_before (bool):
36
+ True: use layer_norm before each sub-block.
37
+ False: to use layer_norm after each sub-block.
38
+ """
39
+
40
+ def __init__(
41
+ self,
42
+ size: int,
43
+ self_attn: torch.nn.Module,
44
+ feed_forward: torch.nn.Module,
45
+ dropout_rate: float,
46
+ normalize_before: bool = True,
47
+ ):
48
+ """Construct an EncoderLayer object."""
49
+ super().__init__()
50
+ self.self_attn = self_attn
51
+ self.feed_forward = feed_forward
52
+ self.norm1 = nn.LayerNorm(size, eps=1e-5)
53
+ self.norm2 = nn.LayerNorm(size, eps=1e-5)
54
+ self.dropout = nn.Dropout(dropout_rate)
55
+ self.size = size
56
+ self.normalize_before = normalize_before
57
+
58
+ def forward(
59
+ self,
60
+ x: torch.Tensor,
61
+ mask: torch.Tensor,
62
+ pos_emb: torch.Tensor,
63
+ mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
64
+ att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
65
+ cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
66
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
67
+ """Compute encoded features.
68
+
69
+ Args:
70
+ x (torch.Tensor): (#batch, time, size)
71
+ mask (torch.Tensor): Mask tensor for the input (#batch, time,time),
72
+ (0, 0, 0) means fake mask.
73
+ pos_emb (torch.Tensor): just for interface compatibility
74
+ to ConformerEncoderLayer
75
+ mask_pad (torch.Tensor): does not used in transformer layer,
76
+ just for unified api with conformer.
77
+ att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
78
+ (#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
79
+ cnn_cache (torch.Tensor): Convolution cache in conformer layer
80
+ (#batch=1, size, cache_t2), not used here, it's for interface
81
+ compatibility to ConformerEncoderLayer.
82
+ Returns:
83
+ torch.Tensor: Output tensor (#batch, time, size).
84
+ torch.Tensor: Mask tensor (#batch, time, time).
85
+ torch.Tensor: att_cache tensor,
86
+ (#batch=1, head, cache_t1 + time, d_k * 2).
87
+ torch.Tensor: cnn_cahce tensor (#batch=1, size, cache_t2).
88
+
89
+ """
90
+ residual = x
91
+ if self.normalize_before:
92
+ x = self.norm1(x)
93
+ x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb=pos_emb, cache=att_cache)
94
+ x = residual + self.dropout(x_att)
95
+ if not self.normalize_before:
96
+ x = self.norm1(x)
97
+
98
+ residual = x
99
+ if self.normalize_before:
100
+ x = self.norm2(x)
101
+ x = residual + self.dropout(self.feed_forward(x))
102
+ if not self.normalize_before:
103
+ x = self.norm2(x)
104
+
105
+ fake_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
106
+ return x, mask, new_att_cache, fake_cnn_cache
107
+
108
+
109
+ class ConformerEncoderLayer(nn.Module):
110
+ """Encoder layer module.
111
+ Args:
112
+ size (int): Input dimension.
113
+ self_attn (torch.nn.Module): Self-attention module instance.
114
+ `MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
115
+ instance can be used as the argument.
116
+ feed_forward (torch.nn.Module): Feed-forward module instance.
117
+ `PositionwiseFeedForward` instance can be used as the argument.
118
+ feed_forward_macaron (torch.nn.Module): Additional feed-forward module
119
+ instance.
120
+ `PositionwiseFeedForward` instance can be used as the argument.
121
+ conv_module (torch.nn.Module): Convolution module instance.
122
+ `ConvlutionModule` instance can be used as the argument.
123
+ dropout_rate (float): Dropout rate.
124
+ normalize_before (bool):
125
+ True: use layer_norm before each sub-block.
126
+ False: use layer_norm after each sub-block.
127
+ """
128
+
129
+ def __init__(
130
+ self,
131
+ size: int,
132
+ self_attn: torch.nn.Module,
133
+ feed_forward: Optional[nn.Module] = None,
134
+ feed_forward_macaron: Optional[nn.Module] = None,
135
+ conv_module: Optional[nn.Module] = None,
136
+ dropout_rate: float = 0.1,
137
+ normalize_before: bool = True,
138
+ ):
139
+ """Construct an EncoderLayer object."""
140
+ super().__init__()
141
+ self.self_attn = self_attn
142
+ self.feed_forward = feed_forward
143
+ self.feed_forward_macaron = feed_forward_macaron
144
+ self.conv_module = conv_module
145
+ self.norm_ff = nn.LayerNorm(size, eps=1e-5) # for the FNN module
146
+ self.norm_mha = nn.LayerNorm(size, eps=1e-5) # for the MHA module
147
+ if feed_forward_macaron is not None:
148
+ self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-5)
149
+ self.ff_scale = 0.5
150
+ else:
151
+ self.ff_scale = 1.0
152
+ if self.conv_module is not None:
153
+ self.norm_conv = nn.LayerNorm(size, eps=1e-5) # for the CNN module
154
+ self.norm_final = nn.LayerNorm(
155
+ size, eps=1e-5) # for the final output of the block
156
+ self.dropout = nn.Dropout(dropout_rate)
157
+ self.size = size
158
+ self.normalize_before = normalize_before
159
+
160
+ def forward(
161
+ self,
162
+ x: torch.Tensor,
163
+ mask: torch.Tensor,
164
+ pos_emb: torch.Tensor,
165
+ mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
166
+ att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
167
+ cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
168
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
169
+ """Compute encoded features.
170
+
171
+ Args:
172
+ x (torch.Tensor): (#batch, time, size)
173
+ mask (torch.Tensor): Mask tensor for the input (#batch, time,time),
174
+ (0, 0, 0) means fake mask.
175
+ pos_emb (torch.Tensor): positional encoding, must not be None
176
+ for ConformerEncoderLayer.
177
+ mask_pad (torch.Tensor): batch padding mask used for conv module.
178
+ (#batch, 1,time), (0, 0, 0) means fake mask.
179
+ att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
180
+ (#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
181
+ cnn_cache (torch.Tensor): Convolution cache in conformer layer
182
+ (#batch=1, size, cache_t2)
183
+ Returns:
184
+ torch.Tensor: Output tensor (#batch, time, size).
185
+ torch.Tensor: Mask tensor (#batch, time, time).
186
+ torch.Tensor: att_cache tensor,
187
+ (#batch=1, head, cache_t1 + time, d_k * 2).
188
+ torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2).
189
+ """
190
+
191
+ # whether to use macaron style
192
+ if self.feed_forward_macaron is not None:
193
+ residual = x
194
+ if self.normalize_before:
195
+ x = self.norm_ff_macaron(x)
196
+ x = residual + self.ff_scale * self.dropout(
197
+ self.feed_forward_macaron(x))
198
+ if not self.normalize_before:
199
+ x = self.norm_ff_macaron(x)
200
+ # multi-headed self-attention module
201
+ residual = x
202
+ if self.normalize_before:
203
+ x = self.norm_mha(x)
204
+ x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb,
205
+ att_cache)
206
+ x = residual + self.dropout(x_att)
207
+ if not self.normalize_before:
208
+ x = self.norm_mha(x)
209
+
210
+ # convolution module
211
+ # Fake new cnn cache here, and then change it in conv_module
212
+ new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
213
+ if self.conv_module is not None:
214
+ residual = x
215
+ if self.normalize_before:
216
+ x = self.norm_conv(x)
217
+ x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache)
218
+ x = residual + self.dropout(x)
219
+
220
+ if not self.normalize_before:
221
+ x = self.norm_conv(x)
222
+
223
+ # feed forward module
224
+ residual = x
225
+ if self.normalize_before:
226
+ x = self.norm_ff(x)
227
+
228
+ x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
229
+ if not self.normalize_before:
230
+ x = self.norm_ff(x)
231
+
232
+ if self.conv_module is not None:
233
+ x = self.norm_final(x)
234
+
235
+ return x, mask, new_att_cache, new_cnn_cache
inspiremusic/transformer/label_smoothing_loss.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019 Shigeki Karita
2
+ # 2020 Mobvoi Inc (Binbin Zhang)
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Label smoothing module."""
16
+
17
+ import torch
18
+ from torch import nn
19
+
20
+
21
+ class LabelSmoothingLoss(nn.Module):
22
+ """Label-smoothing loss.
23
+
24
+ In a standard CE loss, the label's data distribution is:
25
+ [0,1,2] ->
26
+ [
27
+ [1.0, 0.0, 0.0],
28
+ [0.0, 1.0, 0.0],
29
+ [0.0, 0.0, 1.0],
30
+ ]
31
+
32
+ In the smoothing version CE Loss,some probabilities
33
+ are taken from the true label prob (1.0) and are divided
34
+ among other labels.
35
+
36
+ e.g.
37
+ smoothing=0.1
38
+ [0,1,2] ->
39
+ [
40
+ [0.9, 0.05, 0.05],
41
+ [0.05, 0.9, 0.05],
42
+ [0.05, 0.05, 0.9],
43
+ ]
44
+
45
+ Args:
46
+ size (int): the number of class
47
+ padding_idx (int): padding class id which will be ignored for loss
48
+ smoothing (float): smoothing rate (0.0 means the conventional CE)
49
+ normalize_length (bool):
50
+ normalize loss by sequence length if True
51
+ normalize loss by batch size if False
52
+ """
53
+
54
+ def __init__(self,
55
+ size: int,
56
+ padding_idx: int,
57
+ smoothing: float,
58
+ normalize_length: bool = False):
59
+ """Construct an LabelSmoothingLoss object."""
60
+ super(LabelSmoothingLoss, self).__init__()
61
+ self.criterion = nn.KLDivLoss(reduction="none")
62
+ self.padding_idx = padding_idx
63
+ self.confidence = 1.0 - smoothing
64
+ self.smoothing = smoothing
65
+ self.size = size
66
+ self.normalize_length = normalize_length
67
+
68
+ def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
69
+ """Compute loss between x and target.
70
+
71
+ The model outputs and data labels tensors are flatten to
72
+ (batch*seqlen, class) shape and a mask is applied to the
73
+ padding part which should not be calculated for loss.
74
+
75
+ Args:
76
+ x (torch.Tensor): prediction (batch, seqlen, class)
77
+ target (torch.Tensor):
78
+ target signal masked with self.padding_id (batch, seqlen)
79
+ Returns:
80
+ loss (torch.Tensor) : The KL loss, scalar float value
81
+ """
82
+ assert x.size(2) == self.size
83
+ batch_size = x.size(0)
84
+ x = x.view(-1, self.size)
85
+ target = target.view(-1)
86
+ # use zeros_like instead of torch.no_grad() for true_dist,
87
+ # since no_grad() can not be exported by JIT
88
+ true_dist = torch.zeros_like(x)
89
+ true_dist.fill_(self.smoothing / (self.size - 1))
90
+ ignore = target == self.padding_idx # (B,)
91
+
92
+ total = len(target) - ignore.sum().item()
93
+ target = target.masked_fill(ignore, 0) # avoid -1 index
94
+ true_dist.scatter_(1, target.unsqueeze(1), self.confidence)
95
+ kl = self.criterion(torch.log_softmax(x, dim=1), true_dist)
96
+ denom = total if self.normalize_length else batch_size
97
+ return kl.masked_fill(ignore.unsqueeze(1), 0).sum() / denom
inspiremusic/transformer/positionwise_feed_forward.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019 Shigeki Karita
2
+ # 2020 Mobvoi Inc (Binbin Zhang)
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Positionwise feed forward layer definition."""
16
+
17
+ import torch
18
+
19
+
20
+ class PositionwiseFeedForward(torch.nn.Module):
21
+ """Positionwise feed forward layer.
22
+
23
+ FeedForward are appied on each position of the sequence.
24
+ The output dim is same with the input dim.
25
+
26
+ Args:
27
+ idim (int): Input dimenstion.
28
+ hidden_units (int): The number of hidden units.
29
+ dropout_rate (float): Dropout rate.
30
+ activation (torch.nn.Module): Activation function
31
+ """
32
+
33
+ def __init__(
34
+ self,
35
+ idim: int,
36
+ hidden_units: int,
37
+ dropout_rate: float,
38
+ activation: torch.nn.Module = torch.nn.ReLU(),
39
+ ):
40
+ """Construct a PositionwiseFeedForward object."""
41
+ super(PositionwiseFeedForward, self).__init__()
42
+ self.w_1 = torch.nn.Linear(idim, hidden_units)
43
+ self.activation = activation
44
+ self.dropout = torch.nn.Dropout(dropout_rate)
45
+ self.w_2 = torch.nn.Linear(hidden_units, idim)
46
+
47
+ def forward(self, xs: torch.Tensor) -> torch.Tensor:
48
+ """Forward function.
49
+
50
+ Args:
51
+ xs: input tensor (B, L, D)
52
+ Returns:
53
+ output tensor, (B, L, D)
54
+ """
55
+ return self.w_2(self.dropout(self.activation(self.w_1(xs))))
56
+
57
+
58
+ class MoEFFNLayer(torch.nn.Module):
59
+ """
60
+ Mixture of expert with Positionwise feed forward layer
61
+ See also figure 1 in https://arxiv.org/pdf/2305.15663.pdf
62
+ The output dim is same with the input dim.
63
+
64
+ Modified from https://github.com/Lightning-AI/lit-gpt/pull/823
65
+ https://github.com/mistralai/mistral-src/blob/b46d6/moe_one_file_ref.py#L203-L219
66
+ Args:
67
+ n_expert: number of expert.
68
+ n_expert_per_token: The actual number of experts used for each frame
69
+ idim (int): Input dimenstion.
70
+ hidden_units (int): The number of hidden units.
71
+ dropout_rate (float): Dropout rate.
72
+ activation (torch.nn.Module): Activation function
73
+ """
74
+
75
+ def __init__(
76
+ self,
77
+ n_expert: int,
78
+ n_expert_per_token: int,
79
+ idim: int,
80
+ hidden_units: int,
81
+ dropout_rate: float,
82
+ activation: torch.nn.Module = torch.nn.ReLU(),
83
+ ):
84
+ super(MoEFFNLayer, self).__init__()
85
+ self.gate = torch.nn.Linear(idim, n_expert, bias=False)
86
+ self.experts = torch.nn.ModuleList(
87
+ PositionwiseFeedForward(idim, hidden_units, dropout_rate,
88
+ activation) for _ in range(n_expert))
89
+ self.n_expert_per_token = n_expert_per_token
90
+
91
+ def forward(self, xs: torch.Tensor) -> torch.Tensor:
92
+ """Foward function.
93
+ Args:
94
+ xs: input tensor (B, L, D)
95
+ Returns:
96
+ output tensor, (B, L, D)
97
+
98
+ """
99
+ B, L, D = xs.size(
100
+ ) # batch size, sequence length, embedding dimension (idim)
101
+ xs = xs.view(-1, D) # (B*L, D)
102
+ router = self.gate(xs) # (B*L, n_expert)
103
+ logits, indices = torch.topk(
104
+ router, self.n_expert_per_token
105
+ ) # probs:(B*L, n_expert), indices: (B*L, n_expert)
106
+ weights = torch.nn.functional.softmax(
107
+ logits, dim=1,
108
+ dtype=torch.float).to(dtype=xs.dtype) # (B*L, n_expert_per_token)
109
+ output = torch.zeros_like(xs) # (B*L, D)
110
+ for i, expert in enumerate(self.experts):
111
+ mask = indices == i
112
+ batch_idx, ith_expert = torch.where(mask)
113
+ output[batch_idx] += weights[batch_idx, ith_expert, None] * expert(
114
+ xs[batch_idx])
115
+ return output.view(B, L, D)
inspiremusic/transformer/qwen_encoder.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import torch.nn as nn
16
+ import torch
17
+ from transformers import AutoModelForCausalLM, AutoTokenizer
18
+ from inspiremusic.utils.mask import make_pad_mask
19
+ from inspiremusic.utils.hinter import hint_once
20
+
21
+ class QwenEncoder(nn.Module):
22
+ def __init__(
23
+ self,
24
+ input_size: int,
25
+ pretrain_path: str = "Qwen/Qwen2.0-0.5B",
26
+ trainable: bool = False,
27
+ do_fusion_emb: bool = False,
28
+ fusion_drop_rate: float = 0.0,
29
+ ):
30
+ super(QwenEncoder, self).__init__()
31
+ self.input_size = input_size
32
+ self.trainable = trainable
33
+ self.model = AutoModelForCausalLM.from_pretrained(pretrain_path, device_map="cpu")
34
+ self._output_size = self.model.config.hidden_size
35
+ self.do_fusion_emb = do_fusion_emb
36
+ self.hidden_norm = torch.nn.LayerNorm(self._output_size)
37
+ self.fusion_dropout = nn.Dropout(fusion_drop_rate)
38
+ if do_fusion_emb:
39
+ self.fusion_layer = torch.nn.Linear(self._output_size * 2, self._output_size)
40
+ self.emb_norm = torch.nn.LayerNorm(self._output_size)
41
+ self.fusion_norm = torch.nn.LayerNorm(self._output_size)
42
+ from inspiremusic.transformer.activation import Swish
43
+ self.fusion_act = Swish(self)
44
+
45
+ if not self.trainable:
46
+ self.model.eval()
47
+
48
+ def output_size(self) -> int:
49
+ return self._output_size
50
+
51
+ def forward(
52
+ self,
53
+ input_ids: torch.Tensor,
54
+ ilens: torch.Tensor,
55
+ ):
56
+ device = input_ids.device
57
+ input_ids = torch.clamp(input_ids, min=0, max=None)
58
+ input_masks = (~make_pad_mask(ilens)).to(device).long()
59
+ if not self.trainable:
60
+ with torch.no_grad():
61
+ model_outputs = self.model(
62
+ input_ids=input_ids,
63
+ attention_mask=input_masks,
64
+ output_hidden_states=True
65
+ )
66
+ else:
67
+ model_outputs = self.model(
68
+ input_ids=input_ids,
69
+ attention_mask=input_masks,
70
+ output_hidden_states=True
71
+ )
72
+ outs = model_outputs.hidden_states[-1]
73
+ outs = self.hidden_norm(outs)
74
+ if self.do_fusion_emb:
75
+ hint_once("fuse embedding and LM outputs", "fuse_emb")
76
+ outs = self.fusion_dropout(self.fusion_act(outs))
77
+ emb = model_outputs.hidden_states[0]
78
+ emb = self.fusion_dropout(self.fusion_act(self.emb_norm(emb)))
79
+ outs = self.fusion_layer(
80
+ torch.cat([outs, emb], dim=-1)
81
+ )
82
+ outs = self.fusion_act(self.fusion_norm(outs))
83
+
84
+ return outs, ilens
85
+
86
+
87
+ class QwenEmbeddingEncoder(nn.Module):
88
+ def __init__(
89
+ self,
90
+ input_size: int,
91
+ pretrain_path: str = "Qwen/Qwen2.0-0.5B",
92
+ ):
93
+ super(QwenEmbeddingEncoder, self).__init__()
94
+ self.input_size = input_size
95
+ from transformers import Qwen2ForCausalLM
96
+ self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path, device_map="cpu", attn_implementation="flash_attention_2")
97
+ self._output_size = self.model.config.hidden_size
98
+
99
+ def output_size(self) -> int:
100
+ return self._output_size
101
+
102
+ def forward(
103
+ self,
104
+ input_embeds: torch.Tensor,
105
+ ilens: torch.Tensor,
106
+ ):
107
+ input_masks = (~make_pad_mask(ilens)).to(input_embeds.device).long()
108
+
109
+ outs = self.model(
110
+ inputs_embeds=input_embeds,
111
+ attention_mask=input_masks,
112
+ output_hidden_states=True,
113
+ return_dict=True,
114
+ )
115
+
116
+ return outs.hidden_states[-1], input_masks
117
+
118
+ def forward_one_step(self, xs, masks, cache=None):
119
+
120
+ outs = self.model(
121
+ inputs_embeds=xs,
122
+ attention_mask=masks,
123
+ output_hidden_states=True,
124
+ return_dict=True,
125
+ use_cache=True,
126
+ past_key_values=cache,
127
+ )
128
+ xs = outs.hidden_states[-1]
129
+ new_cache = outs.past_key_values
130
+
131
+ return xs, masks, new_cache
132
+
133
+
134
+ class QwenInputOnlyEncoder(nn.Module):
135
+ def __init__(
136
+ self,
137
+ input_size: int,
138
+ pretrain_path: str = "Qwen/Qwen2.0-0.5B",
139
+ ):
140
+ super(QwenInputOnlyEncoder, self).__init__()
141
+ self.input_size = input_size
142
+ from transformers import Qwen2ForCausalLM
143
+ model = Qwen2ForCausalLM.from_pretrained(pretrain_path, device_map="cpu", attn_implementation="flash_attention_2")
144
+ self.embed = model.model.embed_tokens
145
+ for p in self.embed.parameters():
146
+ p.requires_grad = False
147
+ # set text embedding to non-trainable
148
+
149
+ # self.post_embed = model.model.rotary_emb
150
+ self._output_size = model.config.hidden_size
151
+
152
+ def output_size(self) -> int:
153
+ return self._output_size
154
+
155
+ def forward(
156
+ self,
157
+ input_ids: torch.Tensor,
158
+ ilens: torch.Tensor,
159
+ ):
160
+ input_masks = (~make_pad_mask(ilens)).to(input_ids.device).long()
161
+
162
+ outs = self.embed(input_ids)
163
+
164
+ return outs, input_masks
165
+
inspiremusic/transformer/subsampling.py ADDED
@@ -0,0 +1,384 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
2
+ # 2024 Alibaba Inc (Xiang Lyu)
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # Modified from ESPnet(https://github.com/espnet/espnet)
16
+ """Subsampling layer definition."""
17
+
18
+ from typing import Tuple, Union
19
+
20
+ import torch
21
+
22
+
23
+ class BaseSubsampling(torch.nn.Module):
24
+
25
+ def __init__(self):
26
+ super().__init__()
27
+ self.right_context = 0
28
+ self.subsampling_rate = 1
29
+
30
+ def position_encoding(self, offset: Union[int, torch.Tensor],
31
+ size: int) -> torch.Tensor:
32
+ return self.pos_enc.position_encoding(offset, size)
33
+
34
+
35
+ class EmbedinigNoSubsampling(BaseSubsampling):
36
+ """Embedding input without subsampling
37
+ """
38
+
39
+ def __init__(self, idim: int, odim: int, dropout_rate: float,
40
+ pos_enc_class: torch.nn.Module):
41
+ super().__init__()
42
+ self.embed = torch.nn.Embedding(idim, odim)
43
+ self.pos_enc = pos_enc_class
44
+
45
+ def forward(
46
+ self,
47
+ x: torch.Tensor,
48
+ x_mask: torch.Tensor,
49
+ offset: Union[int, torch.Tensor] = 0
50
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
51
+ """Input x.
52
+
53
+ Args:
54
+ x (torch.Tensor): Input tensor (#batch, time, idim).
55
+ x_mask (torch.Tensor): Input mask (#batch, 1, time).
56
+
57
+ Returns:
58
+ torch.Tensor: linear input tensor (#batch, time', odim),
59
+ where time' = time .
60
+ torch.Tensor: linear input mask (#batch, 1, time'),
61
+ where time' = time .
62
+
63
+ """
64
+ x = self.embed(x)
65
+ x, pos_emb = self.pos_enc(x, offset)
66
+ return x, pos_emb, x_mask
67
+
68
+
69
+ class LinearNoSubsampling(BaseSubsampling):
70
+ """Linear transform the input without subsampling
71
+
72
+ Args:
73
+ idim (int): Input dimension.
74
+ odim (int): Output dimension.
75
+ dropout_rate (float): Dropout rate.
76
+
77
+ """
78
+
79
+ def __init__(self, idim: int, odim: int, dropout_rate: float,
80
+ pos_enc_class: torch.nn.Module):
81
+ """Construct an linear object."""
82
+ super().__init__()
83
+ self.out = torch.nn.Sequential(
84
+ torch.nn.Linear(idim, odim),
85
+ torch.nn.LayerNorm(odim, eps=1e-5),
86
+ torch.nn.Dropout(dropout_rate),
87
+ )
88
+ self.pos_enc = pos_enc_class
89
+ self.right_context = 0
90
+ self.subsampling_rate = 1
91
+
92
+ def forward(
93
+ self,
94
+ x: torch.Tensor,
95
+ x_mask: torch.Tensor,
96
+ offset: Union[int, torch.Tensor] = 0
97
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
98
+ """Input x.
99
+
100
+ Args:
101
+ x (torch.Tensor): Input tensor (#batch, time, idim).
102
+ x_mask (torch.Tensor): Input mask (#batch, 1, time).
103
+
104
+ Returns:
105
+ torch.Tensor: linear input tensor (#batch, time', odim),
106
+ where time' = time .
107
+ torch.Tensor: linear input mask (#batch, 1, time'),
108
+ where time' = time .
109
+
110
+ """
111
+ x = self.out(x)
112
+ x, pos_emb = self.pos_enc(x, offset)
113
+ return x, pos_emb, x_mask
114
+
115
+
116
+ class Conv1dSubsampling2(BaseSubsampling):
117
+ """Convolutional 1D subsampling (to 1/2 length).
118
+ It is designed for Whisper, ref:
119
+ https://github.com/openai/whisper/blob/main/whisper/model.py
120
+
121
+ Args:
122
+ idim (int): Input dimension.
123
+ odim (int): Output dimension.
124
+ dropout_rate (float): Dropout rate.
125
+
126
+ """
127
+
128
+ def __init__(self, idim: int, odim: int, dropout_rate: float,
129
+ pos_enc_class: torch.nn.Module):
130
+ """Construct an Conv1dSubsampling2 object."""
131
+ super().__init__()
132
+ self.conv = torch.nn.Sequential(
133
+ torch.nn.Conv1d(idim, odim, kernel_size=3, padding=1),
134
+ torch.nn.GELU(),
135
+ torch.nn.Conv1d(odim, odim, kernel_size=3, stride=2, padding=1),
136
+ torch.nn.GELU(),
137
+ )
138
+ self.pos_enc = pos_enc_class
139
+ # The right context for every conv layer is computed by:
140
+ # (kernel_size - 1) * frame_rate_of_this_layer
141
+ self.subsampling_rate = 2
142
+ # 4 = (3 - 1) * 1 + (3 - 1) * 1
143
+ self.right_context = 4
144
+
145
+ def forward(
146
+ self,
147
+ x: torch.Tensor,
148
+ x_mask: torch.Tensor,
149
+ offset: Union[int, torch.Tensor] = 0
150
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
151
+ """Subsample x.
152
+
153
+ Args:
154
+ x (torch.Tensor): Input tensor (#batch, time, idim).
155
+ x_mask (torch.Tensor): Input mask (#batch, 1, time).
156
+
157
+ Returns:
158
+ torch.Tensor: Subsampled tensor (#batch, time', odim),
159
+ where time' = time // 2.
160
+ torch.Tensor: Subsampled mask (#batch, 1, time'),
161
+ where time' = time // 2.
162
+ torch.Tensor: positional encoding
163
+
164
+ """
165
+ time = x.size(1)
166
+ x = x.transpose(1, 2) # (b, f, t)
167
+ x = self.conv(x)
168
+ x = x.transpose(1, 2) # (b, t, f)
169
+ x, pos_emb = self.pos_enc(x, offset)
170
+ return x, pos_emb, x_mask[:, :, (time + 1) % 2::2]
171
+
172
+
173
+ class Conv2dSubsampling4(BaseSubsampling):
174
+ """Convolutional 2D subsampling (to 1/4 length).
175
+
176
+ Args:
177
+ idim (int): Input dimension.
178
+ odim (int): Output dimension.
179
+ dropout_rate (float): Dropout rate.
180
+
181
+ """
182
+
183
+ def __init__(self, idim: int, odim: int, dropout_rate: float,
184
+ pos_enc_class: torch.nn.Module):
185
+ """Construct an Conv2dSubsampling4 object."""
186
+ super().__init__()
187
+ self.conv = torch.nn.Sequential(
188
+ torch.nn.Conv2d(1, odim, 3, 2),
189
+ torch.nn.ReLU(),
190
+ torch.nn.Conv2d(odim, odim, 3, 2),
191
+ torch.nn.ReLU(),
192
+ )
193
+ self.out = torch.nn.Sequential(
194
+ torch.nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim))
195
+ self.pos_enc = pos_enc_class
196
+ # The right context for every conv layer is computed by:
197
+ # (kernel_size - 1) * frame_rate_of_this_layer
198
+ self.subsampling_rate = 4
199
+ # 6 = (3 - 1) * 1 + (3 - 1) * 2
200
+ self.right_context = 6
201
+
202
+ def forward(
203
+ self,
204
+ x: torch.Tensor,
205
+ x_mask: torch.Tensor,
206
+ offset: Union[int, torch.Tensor] = 0
207
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
208
+ """Subsample x.
209
+
210
+ Args:
211
+ x (torch.Tensor): Input tensor (#batch, time, idim).
212
+ x_mask (torch.Tensor): Input mask (#batch, 1, time).
213
+
214
+ Returns:
215
+ torch.Tensor: Subsampled tensor (#batch, time', odim),
216
+ where time' = time // 4.
217
+ torch.Tensor: Subsampled mask (#batch, 1, time'),
218
+ where time' = time // 4.
219
+ torch.Tensor: positional encoding
220
+
221
+ """
222
+ x = x.unsqueeze(1) # (b, c=1, t, f)
223
+ x = self.conv(x)
224
+ b, c, t, f = x.size()
225
+ x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
226
+ x, pos_emb = self.pos_enc(x, offset)
227
+ return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2]
228
+
229
+
230
+ class Conv2dSubsampling6(BaseSubsampling):
231
+ """Convolutional 2D subsampling (to 1/6 length).
232
+ Args:
233
+ idim (int): Input dimension.
234
+ odim (int): Output dimension.
235
+ dropout_rate (float): Dropout rate.
236
+ pos_enc (torch.nn.Module): Custom position encoding layer.
237
+ """
238
+
239
+ def __init__(self, idim: int, odim: int, dropout_rate: float,
240
+ pos_enc_class: torch.nn.Module):
241
+ """Construct an Conv2dSubsampling6 object."""
242
+ super().__init__()
243
+ self.conv = torch.nn.Sequential(
244
+ torch.nn.Conv2d(1, odim, 3, 2),
245
+ torch.nn.ReLU(),
246
+ torch.nn.Conv2d(odim, odim, 5, 3),
247
+ torch.nn.ReLU(),
248
+ )
249
+ self.linear = torch.nn.Linear(odim * (((idim - 1) // 2 - 2) // 3),
250
+ odim)
251
+ self.pos_enc = pos_enc_class
252
+ # 10 = (3 - 1) * 1 + (5 - 1) * 2
253
+ self.subsampling_rate = 6
254
+ self.right_context = 10
255
+
256
+ def forward(
257
+ self,
258
+ x: torch.Tensor,
259
+ x_mask: torch.Tensor,
260
+ offset: Union[int, torch.Tensor] = 0
261
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
262
+ """Subsample x.
263
+ Args:
264
+ x (torch.Tensor): Input tensor (#batch, time, idim).
265
+ x_mask (torch.Tensor): Input mask (#batch, 1, time).
266
+
267
+ Returns:
268
+ torch.Tensor: Subsampled tensor (#batch, time', odim),
269
+ where time' = time // 6.
270
+ torch.Tensor: Subsampled mask (#batch, 1, time'),
271
+ where time' = time // 6.
272
+ torch.Tensor: positional encoding
273
+ """
274
+ x = x.unsqueeze(1) # (b, c, t, f)
275
+ x = self.conv(x)
276
+ b, c, t, f = x.size()
277
+ x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
278
+ x, pos_emb = self.pos_enc(x, offset)
279
+ return x, pos_emb, x_mask[:, :, 2::2][:, :, 4::3]
280
+
281
+
282
+ class Conv2dSubsampling8(BaseSubsampling):
283
+ """Convolutional 2D subsampling (to 1/8 length).
284
+
285
+ Args:
286
+ idim (int): Input dimension.
287
+ odim (int): Output dimension.
288
+ dropout_rate (float): Dropout rate.
289
+
290
+ """
291
+
292
+ def __init__(self, idim: int, odim: int, dropout_rate: float,
293
+ pos_enc_class: torch.nn.Module):
294
+ """Construct an Conv2dSubsampling8 object."""
295
+ super().__init__()
296
+ self.conv = torch.nn.Sequential(
297
+ torch.nn.Conv2d(1, odim, 3, 2),
298
+ torch.nn.ReLU(),
299
+ torch.nn.Conv2d(odim, odim, 3, 2),
300
+ torch.nn.ReLU(),
301
+ torch.nn.Conv2d(odim, odim, 3, 2),
302
+ torch.nn.ReLU(),
303
+ )
304
+ self.linear = torch.nn.Linear(
305
+ odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2), odim)
306
+ self.pos_enc = pos_enc_class
307
+ self.subsampling_rate = 8
308
+ # 14 = (3 - 1) * 1 + (3 - 1) * 2 + (3 - 1) * 4
309
+ self.right_context = 14
310
+
311
+ def forward(
312
+ self,
313
+ x: torch.Tensor,
314
+ x_mask: torch.Tensor,
315
+ offset: Union[int, torch.Tensor] = 0
316
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
317
+ """Subsample x.
318
+
319
+ Args:
320
+ x (torch.Tensor): Input tensor (#batch, time, idim).
321
+ x_mask (torch.Tensor): Input mask (#batch, 1, time).
322
+
323
+ Returns:
324
+ torch.Tensor: Subsampled tensor (#batch, time', odim),
325
+ where time' = time // 8.
326
+ torch.Tensor: Subsampled mask (#batch, 1, time'),
327
+ where time' = time // 8.
328
+ torch.Tensor: positional encoding
329
+ """
330
+ x = x.unsqueeze(1) # (b, c, t, f)
331
+ x = self.conv(x)
332
+ b, c, t, f = x.size()
333
+ x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
334
+ x, pos_emb = self.pos_enc(x, offset)
335
+ return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2][:, :, 2::2]
336
+
337
+
338
+ class LegacyLinearNoSubsampling(BaseSubsampling):
339
+ """Linear transform the input without subsampling
340
+
341
+ Args:
342
+ idim (int): Input dimension.
343
+ odim (int): Output dimension.
344
+ dropout_rate (float): Dropout rate.
345
+
346
+ """
347
+
348
+ def __init__(self, idim: int, odim: int, dropout_rate: float,
349
+ pos_enc_class: torch.nn.Module):
350
+ """Construct an linear object."""
351
+ super().__init__()
352
+ self.out = torch.nn.Sequential(
353
+ torch.nn.Linear(idim, odim),
354
+ torch.nn.LayerNorm(odim, eps=1e-5),
355
+ torch.nn.Dropout(dropout_rate),
356
+ torch.nn.ReLU(),
357
+ )
358
+ self.pos_enc = pos_enc_class
359
+ self.right_context = 0
360
+ self.subsampling_rate = 1
361
+
362
+ def forward(
363
+ self,
364
+ x: torch.Tensor,
365
+ x_mask: torch.Tensor,
366
+ offset: Union[int, torch.Tensor] = 0
367
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
368
+ """Input x.
369
+
370
+ Args:
371
+ x (torch.Tensor): Input tensor (#batch, time, idim).
372
+ x_mask (torch.Tensor): Input mask (#batch, 1, time).
373
+
374
+ Returns:
375
+ torch.Tensor: linear input tensor (#batch, time', odim),
376
+ where time' = time .
377
+ torch.Tensor: linear input mask (#batch, 1, time'),
378
+ where time' = time .
379
+
380
+ """
381
+
382
+ x = self.out(x)
383
+ x, pos_emb = self.pos_enc(x, offset)
384
+ return x, pos_emb, x_mask
inspiremusic/utils/__init__.py ADDED
File without changes
inspiremusic/utils/audio_utils.py ADDED
@@ -0,0 +1,623 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ #!/usr/bin/env python
16
+ # -*- coding: utf-8 -*-
17
+
18
+ import io
19
+ import logging
20
+ import re
21
+ import sys
22
+ import inspect
23
+ import random
24
+ import typing as tp
25
+ from functools import partial
26
+
27
+ import omegaconf
28
+ import torch
29
+ import torchaudio
30
+ import numpy as np
31
+
32
+ from typing_extensions import Literal
33
+ from typing import (
34
+ Any,
35
+ Union,
36
+ Iterable,
37
+ List,
38
+ Dict,
39
+ Optional,
40
+ Tuple,
41
+ )
42
+
43
+ from librosa.filters import mel as librosa_mel_fn
44
+ from scipy.io.wavfile import read
45
+
46
+ _BoolLike_co = Union[bool, np.bool_]
47
+ _IntLike_co = Union[_BoolLike_co, int, "np.integer[Any]"]
48
+ _FloatLike_co = Union[_IntLike_co, float, "np.floating[Any]"]
49
+
50
+ def process_audio(file_path, target_sample_rate=24000):
51
+ audio, sample_rate = torchaudio.load(file_path)
52
+ # Check if the audio needs to be resampled
53
+ if sample_rate != target_sample_rate:
54
+ audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sample_rate)(audio)
55
+ # Convert stereo to mono (if necessary)
56
+ audio = audio.mean(dim=0, keepdim=True) if audio.size(0) == 2 else audio
57
+ return audio, target_sample_rate
58
+
59
+ def load_wav(full_path):
60
+ sampling_rate, data = read(full_path)
61
+ return data, sampling_rate
62
+
63
+ def dynamic_range_compression(x, C=1, clip_val=1e-5):
64
+ return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
65
+
66
+
67
+ def dynamic_range_decompression(x, C=1):
68
+ return np.exp(x) / C
69
+
70
+
71
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
72
+ return torch.log(torch.clamp(x, min=clip_val) * C)
73
+
74
+
75
+ def dynamic_range_decompression_torch(x, C=1):
76
+ return torch.exp(x) / C
77
+
78
+
79
+ def spectral_normalize_torch(magnitudes):
80
+ output = dynamic_range_compression_torch(magnitudes)
81
+ return output
82
+
83
+
84
+ def spectral_de_normalize_torch(magnitudes):
85
+ output = dynamic_range_decompression_torch(magnitudes)
86
+ return output
87
+
88
+ def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
89
+ if torch.min(y) < -1.0:
90
+ print("min value is ", torch.min(y))
91
+ if torch.max(y) > 1.0:
92
+ print("max value is ", torch.max(y))
93
+
94
+ # global mel_basis, hann_window # pylint: disable=global-statement,global-variable-not-assigned
95
+ mel_basis = {}
96
+ hann_window = {}
97
+ if f"{str(fmax)}_{str(y.device)}" not in mel_basis:
98
+ mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
99
+ mel_basis[str(fmax) + "_" + str(y.device)] = torch.from_numpy(mel).float().to(y.device)
100
+ hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
101
+
102
+ y = torch.nn.functional.pad(
103
+ y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect"
104
+ )
105
+ y = y.squeeze(1)
106
+
107
+ spec = torch.view_as_real(
108
+ torch.stft(
109
+ y,
110
+ n_fft,
111
+ hop_length=hop_size,
112
+ win_length=win_size,
113
+ window=hann_window[str(y.device)],
114
+ center=center,
115
+ pad_mode="reflect",
116
+ normalized=False,
117
+ onesided=True,
118
+ return_complex=True,
119
+ )
120
+ )
121
+
122
+ spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
123
+
124
+ spec = torch.matmul(mel_basis[str(fmax) + "_" + str(y.device)], spec)
125
+ spec = spectral_normalize_torch(spec)
126
+
127
+ return spec
128
+
129
+
130
+ def fade_out(audio: torch.Tensor, sample_rate: int,
131
+ fade_duration: float) -> torch.Tensor:
132
+ """
133
+ Apply a linear fade-out effect to the given audio waveform.
134
+
135
+ Parameters:
136
+ audio (torch.Tensor): The audio waveform tensor.
137
+ sample_rate (int): Sample rate of the audio.
138
+ fade_duration (float): Duration of the fade-out effect in seconds.
139
+
140
+ Returns:
141
+ torch.Tensor: The audio with the fade-out effect applied.
142
+ """
143
+ fade_samples = int(fade_duration * sample_rate)
144
+
145
+ if fade_samples > audio.shape[1]:
146
+ fade_samples = audio.shape[
147
+ 1] # use the whole length of audio if necessary
148
+
149
+ fade_out_envelope = torch.linspace(1.0, 0.0, fade_samples,
150
+ dtype=audio.dtype, device=audio.device)
151
+
152
+ fade_section = audio[:, -fade_samples:].clone()
153
+
154
+ fade_section *= fade_out_envelope
155
+
156
+ faded_audio = audio.clone()
157
+ faded_audio[:, -fade_samples:] = fade_section
158
+
159
+ return faded_audio
160
+
161
+ def split_wav_into_chunks(num_samples, wav, max_chunk_size, minimum_chunk_size=720):
162
+ num_chunks = (num_samples + max_chunk_size - 1) // max_chunk_size # Ceiling division
163
+ wav_chunks = []
164
+ for i in range(num_chunks):
165
+ start_idx = i * max_chunk_size
166
+ end_idx = min(start_idx + max_chunk_size, num_samples)
167
+ if (end_idx - start_idx) >= minimum_chunk_size:
168
+ if len(wav.shape) == 2:
169
+ chunk = wav[:,start_idx:end_idx]
170
+ else:
171
+ chunk = wav[start_idx:end_idx]
172
+ wav_chunks.append(chunk)
173
+ else:
174
+ print(f"{num_samples}:{num_chunks}, chunk size={(end_idx - start_idx)} is lower then minimum_chunk_size!")
175
+ return wav_chunks
176
+
177
+ def tiny(x: Union[float, np.ndarray]) -> _FloatLike_co:
178
+ """Compute the tiny-value corresponding to an input's data type.
179
+ """
180
+ # Make sure we have an array view
181
+ x = np.asarray(x)
182
+
183
+ # Only floating types generate a tiny
184
+ if np.issubdtype(x.dtype, np.floating) or np.issubdtype(
185
+ x.dtype, np.complexfloating
186
+ ):
187
+ dtype = x.dtype
188
+ else:
189
+ dtype = np.dtype(np.float32)
190
+
191
+ return np.finfo(dtype).tiny
192
+
193
+ def detect_silence(audio, sample_rate, threshold=0.05, min_silence_duration=1):
194
+ """
195
+ Detects the first occurrence of silence in the audio.
196
+
197
+ Parameters:
198
+ audio (Tensor): The audio waveform.
199
+ sample_rate (int): The sample rate of the audio.
200
+ threshold (float): The threshold below which the signal is considered silent.
201
+ min_silence_duration (float): The minimum duration of silence in seconds.
202
+
203
+ Returns:
204
+ int: The timestamp (in samples) where the silence starts.
205
+ """
206
+ # Convert the audio to a numpy array for easier manipulation
207
+ audio_np = audio.numpy().flatten()
208
+ # Calculate the energy of the signal
209
+ energy = np.abs(audio_np)
210
+ # Find the indices where the energy is below the threshold
211
+ silent_indices = np.where(energy < threshold)[0]
212
+ # Find the start and end of contiguous silent regions
213
+ silent_regions = np.split(silent_indices, np.where(np.diff(silent_indices) != 1)[0] + 1)
214
+ # Filter out regions that are too short
215
+ min_silence_samples = int(min_silence_duration * sample_rate)
216
+ for region in silent_regions:
217
+ if len(region) >= min_silence_samples:
218
+ return region[0]
219
+
220
+ # If no silence is found, return the length of the audio
221
+ return len(audio_np)
222
+
223
+ def trim_audio(waveform, sample_rate=24000, threshold=0.05, min_silence_duration=1, minimum_silence_start_sample=24000):
224
+ """
225
+ Trims the audio from the beginning to the first occurrence of silence.
226
+
227
+ Parameters:
228
+ waveform (Tensor): The waveform data to the input audio file.
229
+ sample_rate (int): Sample rate of the input audio file.
230
+ threshold (float): The threshold below which the signal is considered silent.
231
+ min_silence_duration (float): The minimum duration of silence in seconds.
232
+ """
233
+ # Detect the first occurrence of silence
234
+ silence_start_sample = detect_silence(waveform, sample_rate, threshold, min_silence_duration)
235
+ if silence_start_sample > minimum_silence_start_sample :
236
+ trimmed_waveform = waveform[:silence_start_sample]
237
+ else:
238
+ trimmed_waveform = waveform[:minimum_silence_start_sample]
239
+ if isinstance(trimmed_waveform, torch.Tensor):
240
+ return trimmed_waveform
241
+ else:
242
+ return trimmed_waveform.unsqueeze()
243
+
244
+ def normalize_loudness(wav: torch.Tensor, sample_rate: int, loudness_headroom_db: float = 14,
245
+ loudness_compressor: bool = False, energy_floor: float = 2e-3):
246
+ """Normalize an input signal to a user loudness in dB LKFS.
247
+ Audio loudness is defined according to the ITU-R BS.1770-4 recommendation.
248
+
249
+ Args:
250
+ wav (torch.Tensor): Input multichannel audio data.
251
+ sample_rate (int): Sample rate.
252
+ loudness_headroom_db (float): Target loudness of the output in dB LUFS.
253
+ loudness_compressor (bool): Uses tanh for soft clipping.
254
+ energy_floor (float): anything below that RMS level will not be rescaled.
255
+ Returns:
256
+ torch.Tensor: Loudness normalized output data.
257
+ """
258
+ energy = wav.pow(2).mean().sqrt().item()
259
+ if energy < energy_floor:
260
+ return wav
261
+ transform = torchaudio.transforms.Loudness(sample_rate)
262
+ input_loudness_db = transform(wav).item()
263
+ # calculate the gain needed to scale to the desired loudness level
264
+ delta_loudness = -loudness_headroom_db - input_loudness_db
265
+ gain = 10.0 ** (delta_loudness / 20.0)
266
+ output = gain * wav
267
+ if loudness_compressor:
268
+ output = torch.tanh(output)
269
+ assert output.isfinite().all(), (input_loudness_db, wav.pow(2).mean().sqrt())
270
+ return output
271
+
272
+ def normalize(
273
+ S: np.ndarray,
274
+ *,
275
+ norm: Optional[float] = np.inf,
276
+ axis: Optional[int] = 0,
277
+ threshold: Optional[_FloatLike_co] = None,
278
+ fill: Optional[bool] = None,
279
+ ) -> np.ndarray:
280
+ """Normalize an array along a chosen axis.
281
+ """
282
+ # Avoid div-by-zero
283
+ if threshold is None:
284
+ threshold = tiny(S)
285
+
286
+ elif threshold <= 0:
287
+ raise ParameterError(f"threshold={threshold} must be strictly positive")
288
+
289
+ if fill not in [None, False, True]:
290
+ raise ParameterError(f"fill={fill} must be None or boolean")
291
+
292
+ if not np.isfinite(S).all():
293
+ raise ParameterError("Input must be finite")
294
+
295
+ # All norms only depend on magnitude, let's do that first
296
+ S = S.numpy()
297
+ mag = np.abs(S).astype(float)
298
+
299
+ # For max/min norms, filling with 1 works
300
+ fill_norm = 1
301
+
302
+ if norm is None:
303
+ return S
304
+
305
+ elif norm == np.inf:
306
+ length = np.max(mag, axis=axis, keepdims=True)
307
+
308
+ elif norm == -np.inf:
309
+ length = np.min(mag, axis=axis, keepdims=True)
310
+
311
+ elif norm == 0:
312
+ if fill is True:
313
+ raise ParameterError("Cannot normalize with norm=0 and fill=True")
314
+
315
+ length = np.sum(mag > 0, axis=axis, keepdims=True, dtype=mag.dtype)
316
+
317
+ elif np.issubdtype(type(norm), np.number) and norm > 0:
318
+ length = np.sum(mag**norm, axis=axis, keepdims=True) ** (1.0 / norm)
319
+
320
+ if axis is None:
321
+ fill_norm = mag.size ** (-1.0 / norm)
322
+ else:
323
+ fill_norm = mag.shape[axis] ** (-1.0 / norm)
324
+
325
+ else:
326
+ raise ParameterError(f"Unsupported norm: {repr(norm)}")
327
+
328
+ # indices where norm is below the threshold
329
+ small_idx = length < threshold
330
+
331
+ Snorm = np.empty_like(S)
332
+ if fill is None:
333
+ # Leave small indices un-normalized
334
+ length[small_idx] = 1.0
335
+ Snorm[:] = S / length
336
+
337
+ elif fill:
338
+ # If we have a non-zero fill value, we locate those entries by
339
+ # doing a nan-divide.
340
+ # If S was finite, then length is finite (except for small positions)
341
+ length[small_idx] = np.nan
342
+ Snorm[:] = S / length
343
+ Snorm[np.isnan(Snorm)] = fill_norm
344
+ else:
345
+ # Set small values to zero by doing an inf-divide.
346
+ # This is safe (by IEEE-754) as long as S is finite.
347
+ length[small_idx] = np.inf
348
+ Snorm[:] = S / length
349
+
350
+ return Snorm
351
+
352
+ def normalize_audio(wav: torch.Tensor, normalize: bool = True,
353
+ strategy: str = 'peak', peak_clip_headroom_db: float = 1,
354
+ rms_headroom_db: float = 18, loudness_headroom_db: float = 14,
355
+ loudness_compressor: bool = False, log_clipping: bool = False,
356
+ sample_rate: tp.Optional[int] = None,
357
+ stem_name: tp.Optional[str] = None) -> torch.Tensor:
358
+ """Normalize the audio according to the prescribed strategy (see after).
359
+
360
+ Args:
361
+ wav (torch.Tensor): Audio data.
362
+ normalize (bool): if `True` (default), normalizes according to the prescribed
363
+ strategy (see after). If `False`, the strategy is only used in case clipping
364
+ would happen.
365
+ strategy (str): Can be either 'clip', 'peak', or 'rms'. Default is 'peak',
366
+ i.e. audio is normalized by its largest value. RMS normalizes by root-mean-square
367
+ with extra headroom to avoid clipping. 'clip' just clips.
368
+ peak_clip_headroom_db (float): Headroom in dB when doing 'peak' or 'clip' strategy.
369
+ rms_headroom_db (float): Headroom in dB when doing 'rms' strategy. This must be much larger
370
+ than the `peak_clip` one to avoid further clipping.
371
+ loudness_headroom_db (float): Target loudness for loudness normalization.
372
+ loudness_compressor (bool): If True, uses tanh based soft clipping.
373
+ log_clipping (bool): If True, basic logging on stderr when clipping still
374
+ occurs despite strategy (only for 'rms').
375
+ sample_rate (int): Sample rate for the audio data (required for loudness).
376
+ stem_name (str, optional): Stem name for clipping logging.
377
+ Returns:
378
+ torch.Tensor: Normalized audio.
379
+ """
380
+ scale_peak = 10 ** (-peak_clip_headroom_db / 20)
381
+ scale_rms = 10 ** (-rms_headroom_db / 20)
382
+ if strategy == 'peak':
383
+ rescaling = (scale_peak / wav.abs().max())
384
+ if normalize or rescaling < 1:
385
+ wav = wav * rescaling
386
+ elif strategy == 'clip':
387
+ wav = wav.clamp(-scale_peak, scale_peak)
388
+ elif strategy == 'rms':
389
+ mono = wav.mean(dim=0)
390
+ rescaling = scale_rms / mono.pow(2).mean().sqrt()
391
+ if normalize or rescaling < 1:
392
+ wav = wav * rescaling
393
+ _clip_wav(wav, log_clipping=log_clipping, stem_name=stem_name)
394
+ elif strategy == 'loudness':
395
+ assert sample_rate is not None, "Loudness normalization requires sample rate."
396
+ wav = normalize_loudness(wav, sample_rate, loudness_headroom_db, loudness_compressor)
397
+ _clip_wav(wav, log_clipping=log_clipping, stem_name=stem_name)
398
+ else:
399
+ assert wav.abs().max() < 1
400
+ assert strategy == '' or strategy == 'none', f"Unexpected strategy: '{strategy}'"
401
+ return wav
402
+
403
+
404
+ def f32_pcm(wav: torch.Tensor) -> torch.Tensor:
405
+ """
406
+ Convert audio to float 32 bits PCM format.
407
+ Args:
408
+ wav (torch.tensor): Input wav tensor
409
+ Returns:
410
+ same wav in float32 PCM format
411
+ """
412
+ if wav.dtype.is_floating_point:
413
+ return wav
414
+ elif wav.dtype == torch.int16:
415
+ return wav.float() / 2**15
416
+ elif wav.dtype == torch.int32:
417
+ return wav.float() / 2**31
418
+ raise ValueError(f"Unsupported wav dtype: {wav.dtype}")
419
+
420
+
421
+ def i16_pcm(wav: torch.Tensor) -> torch.Tensor:
422
+ """Convert audio to int 16 bits PCM format.
423
+
424
+ ..Warning:: There exist many formula for doing this conversion. None are perfect
425
+ due to the asymmetry of the int16 range. One either have possible clipping, DC offset,
426
+ or inconsistencies with f32_pcm. If the given wav doesn't have enough headroom,
427
+ it is possible that `i16_pcm(f32_pcm)) != Identity`.
428
+ Args:
429
+ wav (torch.tensor): Input wav tensor
430
+ Returns:
431
+ same wav in float16 PCM format
432
+ """
433
+ if wav.dtype.is_floating_point:
434
+ assert wav.abs().max() <= 1
435
+ candidate = (wav * 2 ** 15).round()
436
+ if candidate.max() >= 2 ** 15: # clipping would occur
437
+ candidate = (wav * (2 ** 15 - 1)).round()
438
+ return candidate.short()
439
+ else:
440
+ assert wav.dtype == torch.int16
441
+ return wav
442
+
443
+
444
+ def compress(wav: torch.Tensor, sr: int,
445
+ target_format: tp.Literal["mp3", "ogg", "flac"] = "mp3",
446
+ bitrate: str = "128k") -> tp.Tuple[torch.Tensor, int]:
447
+ """Convert audio wave form to a specified lossy format: mp3, ogg, flac
448
+
449
+ Args:
450
+ wav (torch.Tensor): Input wav tensor.
451
+ sr (int): Sampling rate.
452
+ target_format (str): Compression format (e.g., 'mp3').
453
+ bitrate (str): Bitrate for compression.
454
+
455
+ Returns:
456
+ Tuple of compressed WAV tensor and sampling rate.
457
+ """
458
+
459
+ # Extract the bit rate from string (e.g., '128k')
460
+ match = re.search(r"\d+(\.\d+)?", str(bitrate))
461
+ parsed_bitrate = float(match.group()) if match else None
462
+ assert parsed_bitrate, f"Invalid bitrate specified (got {parsed_bitrate})"
463
+ try:
464
+ # Create a virtual file instead of saving to disk
465
+ buffer = io.BytesIO()
466
+
467
+ torchaudio.save(
468
+ buffer, wav, sr, format=target_format, bits_per_sample=parsed_bitrate,
469
+ )
470
+ # Move to the beginning of the file
471
+ buffer.seek(0)
472
+ compressed_wav, sr = torchaudio.load(buffer)
473
+ return compressed_wav, sr
474
+
475
+ except RuntimeError:
476
+ logger.warning(
477
+ f"compression failed skipping compression: {format} {parsed_bitrate}"
478
+ )
479
+ return wav, sr
480
+
481
+
482
+ def get_mp3(wav_tensor: torch.Tensor, sr: int, bitrate: str = "128k") -> torch.Tensor:
483
+ """Convert a batch of audio files to MP3 format, maintaining the original shape.
484
+
485
+ This function takes a batch of audio files represented as a PyTorch tensor, converts
486
+ them to MP3 format using the specified bitrate, and returns the batch in the same
487
+ shape as the input.
488
+
489
+ Args:
490
+ wav_tensor (torch.Tensor): Batch of audio files represented as a tensor.
491
+ Shape should be (batch_size, channels, length).
492
+ sr (int): Sampling rate of the audio.
493
+ bitrate (str): Bitrate for MP3 conversion, default is '128k'.
494
+
495
+ Returns:
496
+ torch.Tensor: Batch of audio files converted to MP3 format, with the same
497
+ shape as the input tensor.
498
+ """
499
+ device = wav_tensor.device
500
+ batch_size, channels, original_length = wav_tensor.shape
501
+
502
+ # Flatten tensor for conversion and move to CPU
503
+ wav_tensor_flat = wav_tensor.view(1, -1).cpu()
504
+
505
+ # Convert to MP3 format with specified bitrate
506
+ wav_tensor_flat, _ = compress(wav_tensor_flat, sr, bitrate=bitrate)
507
+
508
+ # Reshape back to original batch format and trim or pad if necessary
509
+ wav_tensor = wav_tensor_flat.view(batch_size, channels, -1)
510
+ compressed_length = wav_tensor.shape[-1]
511
+ if compressed_length > original_length:
512
+ wav_tensor = wav_tensor[:, :, :original_length] # Trim excess frames
513
+ elif compressed_length < original_length:
514
+ padding = torch.zeros(
515
+ batch_size, channels, original_length - compressed_length, device=device
516
+ )
517
+ wav_tensor = torch.cat((wav_tensor, padding), dim=-1) # Pad with zeros
518
+
519
+ # Move tensor back to the original device
520
+ return wav_tensor.to(device)
521
+
522
+
523
+ def get_aac(
524
+ wav_tensor: torch.Tensor,
525
+ sr: int,
526
+ bitrate: str = "128k",
527
+ lowpass_freq: tp.Optional[int] = None,
528
+ ) -> torch.Tensor:
529
+ """Converts a batch of audio tensors to AAC format and then back to tensors.
530
+
531
+ This function first saves the input tensor batch as WAV files, then uses FFmpeg to convert
532
+ these WAV files to AAC format. Finally, it loads the AAC files back into tensors.
533
+
534
+ Args:
535
+ wav_tensor (torch.Tensor): A batch of audio files represented as a tensor.
536
+ Shape should be (batch_size, channels, length).
537
+ sr (int): Sampling rate of the audio.
538
+ bitrate (str): Bitrate for AAC conversion, default is '128k'.
539
+ lowpass_freq (Optional[int]): Frequency for a low-pass filter. If None, no filter is applied.
540
+
541
+ Returns:
542
+ torch.Tensor: Batch of audio files converted to AAC and back, with the same
543
+ shape as the input tensor.
544
+ """
545
+ import tempfile
546
+ import subprocess
547
+
548
+ device = wav_tensor.device
549
+ batch_size, channels, original_length = wav_tensor.shape
550
+
551
+ # Parse the bitrate value from the string
552
+ match = re.search(r"\d+(\.\d+)?", bitrate)
553
+ parsed_bitrate = (
554
+ match.group() if match else "128"
555
+ ) # Default to 128 if parsing fails
556
+
557
+ # Flatten tensor for conversion and move to CPU
558
+ wav_tensor_flat = wav_tensor.view(1, -1).cpu()
559
+
560
+ with tempfile.NamedTemporaryFile(
561
+ suffix=".wav"
562
+ ) as f_in, tempfile.NamedTemporaryFile(suffix=".aac") as f_out:
563
+ input_path, output_path = f_in.name, f_out.name
564
+
565
+ # Save the tensor as a WAV file
566
+ torchaudio.save(input_path, wav_tensor_flat, sr, backend="ffmpeg")
567
+
568
+ # Prepare FFmpeg command for AAC conversion
569
+ command = [
570
+ "ffmpeg",
571
+ "-y",
572
+ "-i",
573
+ input_path,
574
+ "-ar",
575
+ str(sr),
576
+ "-b:a",
577
+ f"{parsed_bitrate}k",
578
+ "-c:a",
579
+ "aac",
580
+ ]
581
+ if lowpass_freq is not None:
582
+ command += ["-cutoff", str(lowpass_freq)]
583
+ command.append(output_path)
584
+
585
+ try:
586
+ # Run FFmpeg and suppress output
587
+ subprocess.run(command, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
588
+
589
+ # Load the AAC audio back into a tensor
590
+ aac_tensor, _ = torchaudio.load(output_path, backend="ffmpeg")
591
+ except Exception as exc:
592
+ raise RuntimeError(
593
+ "Failed to run command " ".join(command)} "
594
+ "(Often this means ffmpeg is not installed or the encoder is not supported, "
595
+ "make sure you installed an older version ffmpeg<5)"
596
+ ) from exc
597
+
598
+ original_length_flat = batch_size * channels * original_length
599
+ compressed_length_flat = aac_tensor.shape[-1]
600
+
601
+ # Trim excess frames
602
+ if compressed_length_flat > original_length_flat:
603
+ aac_tensor = aac_tensor[:, :original_length_flat]
604
+
605
+ # Pad the shortedn frames
606
+ elif compressed_length_flat < original_length_flat:
607
+ padding = torch.zeros(
608
+ 1, original_length_flat - compressed_length_flat, device=device
609
+ )
610
+ aac_tensor = torch.cat((aac_tensor, padding), dim=-1)
611
+
612
+ # Reshape and adjust length to match original tensor
613
+ wav_tensor = aac_tensor.view(batch_size, channels, -1)
614
+ compressed_length = wav_tensor.shape[-1]
615
+
616
+ assert compressed_length == original_length, (
617
+ "AAC-compressed audio does not have the same frames as original one. "
618
+ "One reason can be ffmpeg is not installed and used as proper backed "
619
+ "for torchaudio, or the AAC encoder is not correct. Run "
620
+ "`torchaudio.utils.ffmpeg_utils.get_audio_encoders()` and make sure we see entry for"
621
+ "AAC in the output."
622
+ )
623
+ return wav_tensor.to(device)
inspiremusic/utils/binary.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ """Raw binary format for Encodec compressed audio. Actual compression API is in `encodec.compress`."""
7
+ import io
8
+ import json
9
+ import struct
10
+ import typing as tp
11
+
12
+ # format is `ECDC` magic code, followed by the header size as uint32.
13
+ # Then an uint8 indicates the protocol version (0.)
14
+ # The header is then provided as json and should contain all required
15
+ # informations for decoding. A raw stream of bytes is then provided
16
+ # and should be interpretable using the json header.
17
+ _encodec_header_struct = struct.Struct('!4sBI')
18
+ _ENCODEC_MAGIC = b'ECDC'
19
+
20
+
21
+ def write_ecdc_header(fo: tp.IO[bytes], metadata: tp.Any):
22
+ meta_dumped = json.dumps(metadata).encode('utf-8')
23
+ version = 0
24
+ header = _encodec_header_struct.pack(_ENCODEC_MAGIC, version,
25
+ len(meta_dumped))
26
+ fo.write(header)
27
+ fo.write(meta_dumped)
28
+ fo.flush()
29
+
30
+
31
+ def _read_exactly(fo: tp.IO[bytes], size: int) -> bytes:
32
+ buf = b""
33
+ while len(buf) < size:
34
+ new_buf = fo.read(size)
35
+ if not new_buf:
36
+ raise EOFError("Impossible to read enough data from the stream, "
37
+ f"{size} bytes remaining.")
38
+ buf += new_buf
39
+ size -= len(new_buf)
40
+ return buf
41
+
42
+
43
+ def read_ecdc_header(fo: tp.IO[bytes]):
44
+ header_bytes = _read_exactly(fo, _encodec_header_struct.size)
45
+ magic, version, meta_size = _encodec_header_struct.unpack(header_bytes)
46
+ if magic != _ENCODEC_MAGIC:
47
+ raise ValueError("File is not in ECDC format.")
48
+ if version != 0:
49
+ raise ValueError("Version not supported.")
50
+ meta_bytes = _read_exactly(fo, meta_size)
51
+ return json.loads(meta_bytes.decode('utf-8'))
52
+
53
+
54
+ class BitPacker:
55
+ """Simple bit packer to handle ints with a non standard width, e.g. 10 bits.
56
+ Note that for some bandwidth (1.5, 3), the codebook representation
57
+ will not cover an integer number of bytes.
58
+
59
+ Args:
60
+ bits (int): number of bits per value that will be pushed.
61
+ fo (IO[bytes]): file-object to push the bytes to.
62
+ """
63
+
64
+ def __init__(self, bits: int, fo: tp.IO[bytes]):
65
+ self._current_value = 0
66
+ self._current_bits = 0
67
+ self.bits = bits
68
+ self.fo = fo
69
+
70
+ def push(self, value: int):
71
+ """Push a new value to the stream. This will immediately
72
+ write as many uint8 as possible to the underlying file-object."""
73
+ self._current_value += (value << self._current_bits)
74
+ self._current_bits += self.bits
75
+ while self._current_bits >= 8:
76
+ lower_8bits = self._current_value & 0xff
77
+ self._current_bits -= 8
78
+ self._current_value >>= 8
79
+ self.fo.write(bytes([lower_8bits]))
80
+
81
+ def flush(self):
82
+ """Flushes the remaining partial uint8, call this at the end
83
+ of the stream to encode."""
84
+ if self._current_bits:
85
+ self.fo.write(bytes([self._current_value]))
86
+ self._current_value = 0
87
+ self._current_bits = 0
88
+ self.fo.flush()
89
+
90
+
91
+ class BitUnpacker:
92
+ """BitUnpacker does the opposite of `BitPacker`.
93
+
94
+ Args:
95
+ bits (int): number of bits of the values to decode.
96
+ fo (IO[bytes]): file-object to push the bytes to.
97
+ """
98
+
99
+ def __init__(self, bits: int, fo: tp.IO[bytes]):
100
+ self.bits = bits
101
+ self.fo = fo
102
+ self._mask = (1 << bits) - 1
103
+ self._current_value = 0
104
+ self._current_bits = 0
105
+
106
+ def pull(self) -> tp.Optional[int]:
107
+ """
108
+ Pull a single value from the stream, potentially reading some
109
+ extra bytes from the underlying file-object.
110
+ Returns `None` when reaching the end of the stream.
111
+ """
112
+ while self._current_bits < self.bits:
113
+ buf = self.fo.read(1)
114
+ if not buf:
115
+ return None
116
+ character = buf[0]
117
+ self._current_value += character << self._current_bits
118
+ self._current_bits += 8
119
+
120
+ out = self._current_value & self._mask
121
+ self._current_value >>= self.bits
122
+ self._current_bits -= self.bits
123
+ return out
124
+
125
+
126
+ def test():
127
+ import torch
128
+ torch.manual_seed(1234)
129
+ for rep in range(4):
130
+ length: int = torch.randint(10, 2_000, (1, )).item()
131
+ bits: int = torch.randint(1, 16, (1, )).item()
132
+ tokens: tp.List[int] = torch.randint(2**bits, (length, )).tolist()
133
+ rebuilt: tp.List[int] = []
134
+ buf = io.BytesIO()
135
+ packer = BitPacker(bits, buf)
136
+ for token in tokens:
137
+ packer.push(token)
138
+ packer.flush()
139
+ buf.seek(0)
140
+ unpacker = BitUnpacker(bits, buf)
141
+ while True:
142
+ value = unpacker.pull()
143
+ if value is None:
144
+ break
145
+ rebuilt.append(value)
146
+ assert len(rebuilt) >= len(tokens), (len(rebuilt), len(tokens))
147
+ # The flushing mechanism might lead to "ghost" values at the end of the stream.
148
+ assert len(rebuilt) <= len(tokens) + 8 // bits, (len(rebuilt),
149
+ len(tokens), bits)
150
+ for idx, (a, b) in enumerate(zip(tokens, rebuilt)):
151
+ assert a == b, (idx, a, b)
152
+
153
+
154
+ if __name__ == '__main__':
155
+ test()