File size: 22,939 Bytes
96fe5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
# Copyright (c) 2024 Alibaba Inc
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import io
import logging
import re
import sys
import inspect
import random
import typing as tp
from functools import partial

import omegaconf
import torch
import torchaudio
import numpy as np

from typing_extensions import Literal
from typing import (
    Any,
    Union,
    Iterable,
    List,
    Dict,
    Optional,
    Tuple,
)

from librosa.filters import mel as librosa_mel_fn
from scipy.io.wavfile import read

_BoolLike_co = Union[bool, np.bool_]
_IntLike_co = Union[_BoolLike_co, int, "np.integer[Any]"]
_FloatLike_co = Union[_IntLike_co, float, "np.floating[Any]"]

def process_audio(file_path, target_sample_rate=24000):
    audio, sample_rate = torchaudio.load(file_path)
    # Check if the audio needs to be resampled
    if sample_rate != target_sample_rate:
        audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sample_rate)(audio)
    # Convert stereo to mono (if necessary)
    audio = audio.mean(dim=0, keepdim=True) if audio.size(0) == 2 else audio
    return audio, target_sample_rate

def load_wav(full_path):
    sampling_rate, data = read(full_path)
    return data, sampling_rate

def dynamic_range_compression(x, C=1, clip_val=1e-5):
    return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)


def dynamic_range_decompression(x, C=1):
    return np.exp(x) / C


def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
    return torch.log(torch.clamp(x, min=clip_val) * C)


def dynamic_range_decompression_torch(x, C=1):
    return torch.exp(x) / C


def spectral_normalize_torch(magnitudes):
    output = dynamic_range_compression_torch(magnitudes)
    return output


def spectral_de_normalize_torch(magnitudes):
    output = dynamic_range_decompression_torch(magnitudes)
    return output

def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
    if torch.min(y) < -1.0:
        print("min value is ", torch.min(y))
    if torch.max(y) > 1.0:
        print("max value is ", torch.max(y))

    # global mel_basis, hann_window  # pylint: disable=global-statement,global-variable-not-assigned
    mel_basis = {}
    hann_window = {}  
    if f"{str(fmax)}_{str(y.device)}" not in mel_basis:
        mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
        mel_basis[str(fmax) + "_" + str(y.device)] = torch.from_numpy(mel).float().to(y.device)
        hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)

    y = torch.nn.functional.pad(
        y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect"
    )
    y = y.squeeze(1)

    spec = torch.view_as_real(
        torch.stft(
            y,
            n_fft,
            hop_length=hop_size,
            win_length=win_size,
            window=hann_window[str(y.device)],
            center=center,
            pad_mode="reflect",
            normalized=False,
            onesided=True,
            return_complex=True,
        )
    )

    spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))

    spec = torch.matmul(mel_basis[str(fmax) + "_" + str(y.device)], spec)
    spec = spectral_normalize_torch(spec)

    return spec


def fade_out(audio: torch.Tensor, sample_rate: int,
             fade_duration: float) -> torch.Tensor:
    """
    Apply a linear fade-out effect to the given audio waveform.

    Parameters:
    audio (torch.Tensor): The audio waveform tensor.
    sample_rate (int): Sample rate of the audio.
    fade_duration (float): Duration of the fade-out effect in seconds.

    Returns:
    torch.Tensor: The audio with the fade-out effect applied.
    """
    fade_samples = int(fade_duration * sample_rate)

    if fade_samples > audio.shape[1]:
        fade_samples = audio.shape[
            1]  # use the whole length of audio if necessary

    fade_out_envelope = torch.linspace(1.0, 0.0, fade_samples,
                                       dtype=audio.dtype, device=audio.device)

    fade_section = audio[:, -fade_samples:].clone()

    fade_section *= fade_out_envelope

    faded_audio = audio.clone()
    faded_audio[:, -fade_samples:] = fade_section

    return faded_audio

def split_wav_into_chunks(num_samples, wav, max_chunk_size, minimum_chunk_size=720):
    num_chunks = (num_samples + max_chunk_size - 1) // max_chunk_size  # Ceiling division
    wav_chunks = []
    for i in range(num_chunks):
        start_idx = i * max_chunk_size
        end_idx = min(start_idx + max_chunk_size, num_samples)
        if (end_idx - start_idx) >= minimum_chunk_size:
            if len(wav.shape) == 2:
                chunk = wav[:,start_idx:end_idx]
            else:
                chunk = wav[start_idx:end_idx]
            wav_chunks.append(chunk)
        else:
            print(f"{num_samples}:{num_chunks}, chunk size={(end_idx - start_idx)} is lower then minimum_chunk_size!")
    return wav_chunks

def tiny(x: Union[float, np.ndarray]) -> _FloatLike_co:
    """Compute the tiny-value corresponding to an input's data type.
    """
    # Make sure we have an array view
    x = np.asarray(x)

    # Only floating types generate a tiny
    if np.issubdtype(x.dtype, np.floating) or np.issubdtype(
        x.dtype, np.complexfloating
    ):
        dtype = x.dtype
    else:
        dtype = np.dtype(np.float32)

    return np.finfo(dtype).tiny

def detect_silence(audio, sample_rate, threshold=0.05, min_silence_duration=1):
    """
    Detects the first occurrence of silence in the audio.

    Parameters:
        audio (Tensor): The audio waveform.
        sample_rate (int): The sample rate of the audio.
        threshold (float): The threshold below which the signal is considered silent.
        min_silence_duration (float): The minimum duration of silence in seconds.

    Returns:
        int: The timestamp (in samples) where the silence starts.
    """
    # Convert the audio to a numpy array for easier manipulation
    audio_np = audio.numpy().flatten()
    # Calculate the energy of the signal
    energy = np.abs(audio_np)
    # Find the indices where the energy is below the threshold
    silent_indices = np.where(energy < threshold)[0]
    # Find the start and end of contiguous silent regions
    silent_regions = np.split(silent_indices, np.where(np.diff(silent_indices) != 1)[0] + 1)
    # Filter out regions that are too short
    min_silence_samples = int(min_silence_duration * sample_rate)
    for region in silent_regions:
        if len(region) >= min_silence_samples:
            return region[0]
    
    # If no silence is found, return the length of the audio
    return len(audio_np)

def trim_audio(waveform, sample_rate=24000, threshold=0.05, min_silence_duration=1, minimum_silence_start_sample=24000):
    """
    Trims the audio from the beginning to the first occurrence of silence.

    Parameters:
        waveform (Tensor): The waveform data to the input audio file.
        sample_rate (int): Sample rate of the input audio file.
        threshold (float): The threshold below which the signal is considered silent.
        min_silence_duration (float): The minimum duration of silence in seconds.
    """
    # Detect the first occurrence of silence
    silence_start_sample = detect_silence(waveform, sample_rate, threshold, min_silence_duration)
    if silence_start_sample > minimum_silence_start_sample :
        trimmed_waveform = waveform[:silence_start_sample]
    else:
        trimmed_waveform = waveform[:minimum_silence_start_sample]
    if isinstance(trimmed_waveform, torch.Tensor):
        return trimmed_waveform
    else:
        return trimmed_waveform.unsqueeze()

def normalize_loudness(wav: torch.Tensor, sample_rate: int, loudness_headroom_db: float = 14,
                       loudness_compressor: bool = False, energy_floor: float = 2e-3):
    """Normalize an input signal to a user loudness in dB LKFS.
    Audio loudness is defined according to the ITU-R BS.1770-4 recommendation.

    Args:
        wav (torch.Tensor): Input multichannel audio data.
        sample_rate (int): Sample rate.
        loudness_headroom_db (float): Target loudness of the output in dB LUFS.
        loudness_compressor (bool): Uses tanh for soft clipping.
        energy_floor (float): anything below that RMS level will not be rescaled.
    Returns:
        torch.Tensor: Loudness normalized output data.
    """
    energy = wav.pow(2).mean().sqrt().item()
    if energy < energy_floor:
        return wav
    transform = torchaudio.transforms.Loudness(sample_rate)
    input_loudness_db = transform(wav).item()
    # calculate the gain needed to scale to the desired loudness level
    delta_loudness = -loudness_headroom_db - input_loudness_db
    gain = 10.0 ** (delta_loudness / 20.0)
    output = gain * wav
    if loudness_compressor:
        output = torch.tanh(output)
    assert output.isfinite().all(), (input_loudness_db, wav.pow(2).mean().sqrt())
    return output

def normalize(
    S: np.ndarray,
    *,
    norm: Optional[float] = np.inf,
    axis: Optional[int] = 0,
    threshold: Optional[_FloatLike_co] = None,
    fill: Optional[bool] = None,
) -> np.ndarray:
    """Normalize an array along a chosen axis.
    """
    # Avoid div-by-zero
    if threshold is None:
        threshold = tiny(S)

    elif threshold <= 0:
        raise ParameterError(f"threshold={threshold} must be strictly positive")

    if fill not in [None, False, True]:
        raise ParameterError(f"fill={fill} must be None or boolean")

    if not np.isfinite(S).all():
        raise ParameterError("Input must be finite")

    # All norms only depend on magnitude, let's do that first
    S = S.numpy()
    mag = np.abs(S).astype(float)

    # For max/min norms, filling with 1 works
    fill_norm = 1

    if norm is None:
        return S

    elif norm == np.inf:
        length = np.max(mag, axis=axis, keepdims=True)

    elif norm == -np.inf:
        length = np.min(mag, axis=axis, keepdims=True)

    elif norm == 0:
        if fill is True:
            raise ParameterError("Cannot normalize with norm=0 and fill=True")

        length = np.sum(mag > 0, axis=axis, keepdims=True, dtype=mag.dtype)

    elif np.issubdtype(type(norm), np.number) and norm > 0:
        length = np.sum(mag**norm, axis=axis, keepdims=True) ** (1.0 / norm)

        if axis is None:
            fill_norm = mag.size ** (-1.0 / norm)
        else:
            fill_norm = mag.shape[axis] ** (-1.0 / norm)

    else:
        raise ParameterError(f"Unsupported norm: {repr(norm)}")

    # indices where norm is below the threshold
    small_idx = length < threshold

    Snorm = np.empty_like(S)
    if fill is None:
        # Leave small indices un-normalized
        length[small_idx] = 1.0
        Snorm[:] = S / length

    elif fill:
        # If we have a non-zero fill value, we locate those entries by
        # doing a nan-divide.
        # If S was finite, then length is finite (except for small positions)
        length[small_idx] = np.nan
        Snorm[:] = S / length
        Snorm[np.isnan(Snorm)] = fill_norm
    else:
        # Set small values to zero by doing an inf-divide.
        # This is safe (by IEEE-754) as long as S is finite.
        length[small_idx] = np.inf
        Snorm[:] = S / length

    return Snorm

def normalize_audio(wav: torch.Tensor, normalize: bool = True,
                    strategy: str = 'peak', peak_clip_headroom_db: float = 1,
                    rms_headroom_db: float = 18, loudness_headroom_db: float = 14,
                    loudness_compressor: bool = False, log_clipping: bool = False,
                    sample_rate: tp.Optional[int] = None,
                    stem_name: tp.Optional[str] = None) -> torch.Tensor:
    """Normalize the audio according to the prescribed strategy (see after).

    Args:
        wav (torch.Tensor): Audio data.
        normalize (bool): if `True` (default), normalizes according to the prescribed
            strategy (see after). If `False`, the strategy is only used in case clipping
            would happen.
        strategy (str): Can be either 'clip', 'peak', or 'rms'. Default is 'peak',
            i.e. audio is normalized by its largest value. RMS normalizes by root-mean-square
            with extra headroom to avoid clipping. 'clip' just clips.
        peak_clip_headroom_db (float): Headroom in dB when doing 'peak' or 'clip' strategy.
        rms_headroom_db (float): Headroom in dB when doing 'rms' strategy. This must be much larger
            than the `peak_clip` one to avoid further clipping.
        loudness_headroom_db (float): Target loudness for loudness normalization.
        loudness_compressor (bool): If True, uses tanh based soft clipping.
        log_clipping (bool): If True, basic logging on stderr when clipping still
            occurs despite strategy (only for 'rms').
        sample_rate (int): Sample rate for the audio data (required for loudness).
        stem_name (str, optional): Stem name for clipping logging.
    Returns:
        torch.Tensor: Normalized audio.
    """
    scale_peak = 10 ** (-peak_clip_headroom_db / 20)
    scale_rms = 10 ** (-rms_headroom_db / 20)
    if strategy == 'peak':
        rescaling = (scale_peak / wav.abs().max())
        if normalize or rescaling < 1:
            wav = wav * rescaling
    elif strategy == 'clip':
        wav = wav.clamp(-scale_peak, scale_peak)
    elif strategy == 'rms':
        mono = wav.mean(dim=0)
        rescaling = scale_rms / mono.pow(2).mean().sqrt()
        if normalize or rescaling < 1:
            wav = wav * rescaling
        _clip_wav(wav, log_clipping=log_clipping, stem_name=stem_name)
    elif strategy == 'loudness':
        assert sample_rate is not None, "Loudness normalization requires sample rate."
        wav = normalize_loudness(wav, sample_rate, loudness_headroom_db, loudness_compressor)
        _clip_wav(wav, log_clipping=log_clipping, stem_name=stem_name)
    else:
        assert wav.abs().max() < 1
        assert strategy == '' or strategy == 'none', f"Unexpected strategy: '{strategy}'"
    return wav


def f32_pcm(wav: torch.Tensor) -> torch.Tensor:
    """
    Convert audio to float 32 bits PCM format.
    Args:
        wav (torch.tensor): Input wav tensor
    Returns:
        same wav in float32 PCM format
    """
    if wav.dtype.is_floating_point:
        return wav
    elif wav.dtype == torch.int16:
        return wav.float() / 2**15
    elif wav.dtype == torch.int32:
        return wav.float() / 2**31
    raise ValueError(f"Unsupported wav dtype: {wav.dtype}")


def i16_pcm(wav: torch.Tensor) -> torch.Tensor:
    """Convert audio to int 16 bits PCM format.

    ..Warning:: There exist many formula for doing this conversion. None are perfect
    due to the asymmetry of the int16 range. One either have possible clipping, DC offset,
    or inconsistencies with f32_pcm. If the given wav doesn't have enough headroom,
    it is possible that `i16_pcm(f32_pcm)) != Identity`.
    Args:
        wav (torch.tensor): Input wav tensor
    Returns:
        same wav in float16 PCM format
    """
    if wav.dtype.is_floating_point:
        assert wav.abs().max() <= 1
        candidate = (wav * 2 ** 15).round()
        if candidate.max() >= 2 ** 15:  # clipping would occur
            candidate = (wav * (2 ** 15 - 1)).round()
        return candidate.short()
    else:
        assert wav.dtype == torch.int16
        return wav


def compress(wav: torch.Tensor, sr: int,
             target_format: tp.Literal["mp3", "ogg", "flac"] = "mp3",
             bitrate: str = "128k") -> tp.Tuple[torch.Tensor, int]:
    """Convert audio wave form to a specified lossy format: mp3, ogg, flac

    Args:
        wav (torch.Tensor): Input wav tensor.
        sr (int): Sampling rate.
        target_format (str): Compression format (e.g., 'mp3').
        bitrate (str): Bitrate for compression.

    Returns:
        Tuple of compressed WAV tensor and sampling rate.
    """

    # Extract the bit rate from string (e.g., '128k')
    match = re.search(r"\d+(\.\d+)?", str(bitrate))
    parsed_bitrate = float(match.group()) if match else None
    assert parsed_bitrate, f"Invalid bitrate specified (got {parsed_bitrate})"
    try:
        # Create a virtual file instead of saving to disk
        buffer = io.BytesIO()

        torchaudio.save(
            buffer, wav, sr, format=target_format, bits_per_sample=parsed_bitrate,
        )
        # Move to the beginning of the file
        buffer.seek(0)
        compressed_wav, sr = torchaudio.load(buffer)
        return compressed_wav, sr

    except RuntimeError:
        logger.warning(
            f"compression failed skipping compression: {format} {parsed_bitrate}"
        )
        return wav, sr


def get_mp3(wav_tensor: torch.Tensor, sr: int, bitrate: str = "128k") -> torch.Tensor:
    """Convert a batch of audio files to MP3 format, maintaining the original shape.

    This function takes a batch of audio files represented as a PyTorch tensor, converts
    them to MP3 format using the specified bitrate, and returns the batch in the same
    shape as the input.

    Args:
        wav_tensor (torch.Tensor): Batch of audio files represented as a tensor.
            Shape should be (batch_size, channels, length).
        sr (int): Sampling rate of the audio.
        bitrate (str): Bitrate for MP3 conversion, default is '128k'.

    Returns:
        torch.Tensor: Batch of audio files converted to MP3 format, with the same
            shape as the input tensor.
    """
    device = wav_tensor.device
    batch_size, channels, original_length = wav_tensor.shape

    # Flatten tensor for conversion and move to CPU
    wav_tensor_flat = wav_tensor.view(1, -1).cpu()

    # Convert to MP3 format with specified bitrate
    wav_tensor_flat, _ = compress(wav_tensor_flat, sr, bitrate=bitrate)

    # Reshape back to original batch format and trim or pad if necessary
    wav_tensor = wav_tensor_flat.view(batch_size, channels, -1)
    compressed_length = wav_tensor.shape[-1]
    if compressed_length > original_length:
        wav_tensor = wav_tensor[:, :, :original_length]  # Trim excess frames
    elif compressed_length < original_length:
        padding = torch.zeros(
            batch_size, channels, original_length - compressed_length, device=device
        )
        wav_tensor = torch.cat((wav_tensor, padding), dim=-1)  # Pad with zeros

    # Move tensor back to the original device
    return wav_tensor.to(device)


def get_aac(
    wav_tensor: torch.Tensor,
    sr: int,
    bitrate: str = "128k",
    lowpass_freq: tp.Optional[int] = None,
) -> torch.Tensor:
    """Converts a batch of audio tensors to AAC format and then back to tensors.

    This function first saves the input tensor batch as WAV files, then uses FFmpeg to convert
    these WAV files to AAC format. Finally, it loads the AAC files back into tensors.

    Args:
        wav_tensor (torch.Tensor): A batch of audio files represented as a tensor.
                                   Shape should be (batch_size, channels, length).
        sr (int): Sampling rate of the audio.
        bitrate (str): Bitrate for AAC conversion, default is '128k'.
        lowpass_freq (Optional[int]): Frequency for a low-pass filter. If None, no filter is applied.

    Returns:
        torch.Tensor: Batch of audio files converted to AAC and back, with the same
                      shape as the input tensor.
    """
    import tempfile
    import subprocess

    device = wav_tensor.device
    batch_size, channels, original_length = wav_tensor.shape

    # Parse the bitrate value from the string
    match = re.search(r"\d+(\.\d+)?", bitrate)
    parsed_bitrate = (
        match.group() if match else "128"
    )  # Default to 128 if parsing fails

    # Flatten tensor for conversion and move to CPU
    wav_tensor_flat = wav_tensor.view(1, -1).cpu()

    with tempfile.NamedTemporaryFile(
        suffix=".wav"
    ) as f_in, tempfile.NamedTemporaryFile(suffix=".aac") as f_out:
        input_path, output_path = f_in.name, f_out.name

        # Save the tensor as a WAV file
        torchaudio.save(input_path, wav_tensor_flat, sr, backend="ffmpeg")

        # Prepare FFmpeg command for AAC conversion
        command = [
            "ffmpeg",
            "-y",
            "-i",
            input_path,
            "-ar",
            str(sr),
            "-b:a",
            f"{parsed_bitrate}k",
            "-c:a",
            "aac",
        ]
        if lowpass_freq is not None:
            command += ["-cutoff", str(lowpass_freq)]
        command.append(output_path)

        try:
            # Run FFmpeg and suppress output
            subprocess.run(command, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)

            # Load the AAC audio back into a tensor
            aac_tensor, _ = torchaudio.load(output_path, backend="ffmpeg")
        except Exception as exc:
            raise RuntimeError(
                "Failed to run command " ".join(command)} "
                "(Often this means ffmpeg is not installed or the encoder is not supported, "
                "make sure you installed an older version ffmpeg<5)"
            ) from exc

    original_length_flat = batch_size * channels * original_length
    compressed_length_flat = aac_tensor.shape[-1]

    # Trim excess frames
    if compressed_length_flat > original_length_flat:
        aac_tensor = aac_tensor[:, :original_length_flat]

    # Pad the shortedn frames
    elif compressed_length_flat < original_length_flat:
        padding = torch.zeros(
            1, original_length_flat - compressed_length_flat, device=device
        )
        aac_tensor = torch.cat((aac_tensor, padding), dim=-1)

    # Reshape and adjust length to match original tensor
    wav_tensor = aac_tensor.view(batch_size, channels, -1)
    compressed_length = wav_tensor.shape[-1]

    assert compressed_length == original_length, (
        "AAC-compressed audio does not have the same frames as original one. "
        "One reason can be ffmpeg is not  installed and used as proper backed "
        "for torchaudio, or the AAC encoder is not correct. Run "
        "`torchaudio.utils.ffmpeg_utils.get_audio_encoders()` and make sure we see entry for"
        "AAC in the output."
    )
    return wav_tensor.to(device)