File size: 8,197 Bytes
96fe5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a9eb30
96fe5d9
5a9eb30
 
bac66d6
bacc813
5a9eb30
 
 
 
 
ca1c4b1
5a9eb30
ca1c4b1
5a9eb30
 
96fe5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright (c) 2024 Alibaba Inc
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
from tqdm import tqdm
from hyperpyyaml import load_hyperpyyaml
from inspiremusic.cli.frontend import InspireMusicFrontEnd
from inspiremusic.cli.model import InspireMusicModel
from inspiremusic.utils.file_utils import logging
import torch

class InspireMusic:
    def __init__(self, model_dir, load_jit=True, load_onnx=False, fast = False, fp16=True, hub="modelscope"):
        instruct = True if '-Instruct' in model_dir else False

        if model_dir is None:
             model_dir = f"pretrained_models/InspireMusic-1.5B-Long"

        if not os.path.isfile(f"{model_dir}/llm.pt"):
            model_name = model_dir.split("/")[-1]
            if hub == "modelscope":
                from modelscope import snapshot_download
                if model_name == "InspireMusic-Base":
                    snapshot_download(f"iic/InspireMusic", local_dir=model_dir)
                else:
                    snapshot_download(f"iic/{model_name}", local_dir=model_dir)

        assert os.path.exists(f'{model_dir}/inspiremusic.yaml')
        with open('{}/inspiremusic.yaml'.format(model_dir), 'r') as f:
            configs = load_hyperpyyaml(f)

        self.frontend = InspireMusicFrontEnd(configs,
                                          configs['get_tokenizer'],
                                          '{}/llm.pt'.format(model_dir),
                                          '{}/flow.pt'.format(model_dir),
                                          '{}/music_tokenizer/'.format(model_dir),
                                          '{}/wavtokenizer/'.format(model_dir),
                                          instruct,
                                          fast,
                                          fp16,
                                          configs['allowed_special'])

        self.model = InspireMusicModel(configs['llm'], configs['flow'], configs['hift'], configs['wavtokenizer'], fast, fp16)
        self.model.load('{}/llm.pt'.format(model_dir),
                        '{}/flow.pt'.format(model_dir),
                        '{}/music_tokenizer/'.format(model_dir),
                        '{}/wavtokenizer/model.pt'.format(model_dir))
        del configs

    @torch.inference_mode()
    def inference(self, task, text, audio, time_start, time_end, chorus, stream=False, sr=24000):
        if task == "text-to-music":
            for i in tqdm(self.frontend.text_normalize(text, split=True)):
                model_input = self.frontend.frontend_text_to_music(i, time_start, time_end, chorus)
                start_time = time.time()
                logging.info('prompt text {}'.format(i))
                for model_output in self.model.inference(**model_input, stream=stream):
                    music_audios_len = model_output['music_audio'].shape[1] / sr
                    logging.info('yield music len {}, rtf {}'.format(music_audios_len, (time.time() - start_time) / music_audios_len))
                    yield model_output
                    start_time = time.time()
                    
        elif task == "continuation":
            if text is None:
                if audio is not None:
                    for i in tqdm(audio):
                        model_input = self.frontend.frontend_continuation(None, i, time_start, time_end, chorus, sr, max_audio_length)
                        start_time = time.time()
                        logging.info('prompt text {}'.format(i))
                        for model_output in self.model.continuation_inference(**model_input, stream=stream):
                            music_audios_len = model_output['music_audio'].shape[1] / sr
                            logging.info('yield music len {}, rtf {}'.format(music_audios_len, (time.time() - start_time) / music_audios_len))
                            yield model_output
                            start_time = time.time()
            else:
                if audio is not None:
                    for i in tqdm(self.frontend.text_normalize(text, split=True)):
                        model_input = self.frontend.frontend_continuation(i, audio, time_start, time_end, chorus, sr, max_audio_length)
                        start_time = time.time()
                        logging.info('prompt text {}'.format(i))
                        for model_output in self.model.continuation_inference(**model_input, stream=stream):
                            music_audios_len = model_output['music_audio'].shape[1] / sr
                            logging.info('yield music len {}, rtf {}'.format(music_audios_len, (time.time() - start_time) / music_audios_len))
                            yield model_output
                            start_time = time.time()
                else:
                    print("Please input text or audio.")
        else:
            print("Currently only support text-to-music and music continuation tasks.")

    @torch.inference_mode()
    def cli_inference(self, text, audio_prompt, time_start, time_end, chorus, task, stream=False, duration_to_gen=30, sr=24000):
        if task == "text-to-music":
            model_input = self.frontend.frontend_text_to_music(text, time_start, time_end, chorus)
            logging.info('prompt text {}'.format(text))
        elif task == "continuation":
            model_input = self.frontend.frontend_continuation(text, audio_prompt, time_start, time_end, chorus, sr)
            logging.info('prompt audio length: {}'.format(len(audio_prompt)))

        start_time = time.time()
        for model_output in self.model.inference(**model_input, duration_to_gen=duration_to_gen, task=task):
            music_audios_len = model_output['music_audio'].shape[1] / sr
            logging.info('yield music len {}, rtf {}'.format(music_audios_len, (time.time() - start_time) / music_audios_len))
            yield model_output
            start_time = time.time()

    @torch.inference_mode()
    def inference_zero_shot(self, text, prompt_text, prompt_audio_16k, stream=False, sr=24000):
        prompt_text = self.frontend.text_normalize(prompt_text, split=False)
        for i in tqdm(self.frontend.text_normalize(text, split=True)):
            model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_audio_16k)
            start_time = time.time()
            logging.info('prompt text {}'.format(i))
            for model_output in self.model.inference(**model_input, stream=stream):
                audio_len = model_output['music_audio'].shape[1] / sr
                logging.info('yield audio len {}, rtf {}'.format(audio_len, (time.time() - start_time) / audio_len))
                yield model_output
                start_time = time.time()
    @torch.inference_mode()
    def inference_instruct(self, text, spk_id, instruct_text, stream=False, sr=24000):
        if self.frontend.instruct is False:
            raise ValueError('{} do not support instruct inference'.format(self.model_dir))
        instruct_text = self.frontend.text_normalize(instruct_text, split=False)
        for i in tqdm(self.frontend.text_normalize(text, split=True)):
            model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
            start_time = time.time()
            logging.info('prompt text {}'.format(i))
            for model_output in self.model.inference(**model_input, stream=stream):
                audio_len = model_output['music_audio'].shape[1] / sr
                logging.info('yield audio len {}, rtf {}'.format(audio_len, (time.time() - start_time) / audio_len))
                yield model_output
                start_time = time.time()