File size: 14,382 Bytes
96fe5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4851aff
96fe5d9
 
 
 
6a854fa
96fe5d9
 
 
69f25ad
96fe5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a9eb30
19e7dfa
96fe5d9
 
 
5a9eb30
bac66d6
2c33955
 
19e7dfa
5a9eb30
 
 
 
bacc813
5a9eb30
bacc813
8e8adbf
5a9eb30
ca1c4b1
96fe5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19e7dfa
96fe5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acf41f6
 
957f1a3
acf41f6
 
 
96fe5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c6a7bd
96fe5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b58efa
96fe5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
# Copyright (c) 2024 Alibaba Inc
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import torchaudio
import time
import logging
import argparse
from inspiremusic.cli.inspiremusic import InspireMusic
from inspiremusic.utils.file_utils import logging
import torch
from inspiremusic.utils.audio_utils import trim_audio, fade_out, process_audio

def set_env_variables():
    os.environ['PYTHONIOENCODING'] = 'UTF-8'
    os.environ['TOKENIZERS_PARALLELISM'] = 'False'
    main_root = os.getcwd()
    bin_dir = os.path.join(main_root, 'inspiremusic')
    third_party_matcha_tts_path = os.path.join(main_root, 'third_party', 'Matcha-TTS')
    python_path = f"{main_root}:{bin_dir}:{third_party_matcha_tts_path}:{os.environ.get('PYTHONPATH', '')}"
    os.environ['PATH'] = python_path
    sys.path.extend([main_root, third_party_matcha_tts_path])

class InspireMusicUnified:
    def __init__(self,
                 model_name: str = "InspireMusic-1.5B-Long",
                 model_dir: str = None,
                 min_generate_audio_seconds: float = 10.0,
                 max_generate_audio_seconds: float = 30.0,
                 sample_rate: int = 24000,
                 output_sample_rate: int = 48000,
                 load_jit: bool = True,
                 load_onnx: bool = False,
                 fast: bool = False,
                 fp16: bool = True,
                 gpu: int = 0,
                 result_dir: str = None,
                 hub="modelscope"):
        os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu)

        # Set model_dir or default to downloading if it doesn't exist
        if model_dir is None:
             model_dir = f"pretrained_models/{model_name}"
        else:
            model_dir = model_dir.replace("../../", "./")

        if not os.path.isfile(f"{model_dir}/llm.pt"):
            if hub == "modelscope":
                from modelscope import snapshot_download
                if model_name == "InspireMusic-Base":
                    snapshot_download(f"iic/InspireMusic", local_dir=model_dir)
                else:
                    snapshot_download(f"iic/{model_name}", local_dir=model_dir)

        self.model_dir = model_dir
        print(self.model_dir)

        self.sample_rate = sample_rate
        self.output_sample_rate = 24000 if fast else output_sample_rate
        self.result_dir = result_dir or f"exp/{model_name}"
        os.makedirs(self.result_dir, exist_ok=True)

        self.min_generate_audio_seconds = min_generate_audio_seconds
        self.max_generate_audio_seconds = max_generate_audio_seconds
        self.min_generate_audio_length = int(self.output_sample_rate * self.min_generate_audio_seconds)
        self.max_generate_audio_length = int(self.output_sample_rate * self.max_generate_audio_seconds)
        assert self.min_generate_audio_seconds <= self.max_generate_audio_seconds, "Min audio seconds must be less than or equal to max audio seconds"

        use_cuda = gpu >= 0 and torch.cuda.is_available()
        self.device = torch.device('cuda' if use_cuda else 'cpu')
        self.model = InspireMusic(self.model_dir, load_jit=load_jit, load_onnx=load_onnx, fast=fast, fp16=fp16)
        self.model.model.llm = self.model.model.llm.to(torch.float16)

        logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

    @torch.inference_mode()
    def inference(self,
                  task: str = 'text-to-music',
                  text: str = None,
                  audio_prompt: str = None, # audio prompt file path
                  chorus: str = "verse",
                  time_start: float = 0.0,
                  time_end: float = 30.0,
                  output_fn: str = "output_audio",
                  max_audio_prompt_length: float = 5.0,
                  fade_out_duration: float = 1.0,
                  output_format: str = "wav",
                  fade_out_mode: bool = True,
                  trim: bool = False,
                  ):

        with torch.no_grad():
            text_prompt = f"<|{time_start}|><|{chorus}|><|{text}|><|{time_end}|>"
            chorus_dict = {"random": torch.randint(1, 5, (1,)).item(), "intro" : 0, "verse": 1, "chorus": 2, "outro": 4}
            chorus = chorus_dict.get(chorus, 1)
            chorus = torch.tensor([chorus], dtype=torch.int).to(self.device)

            time_start_tensor = torch.tensor([time_start], dtype=torch.float64).to(self.device)
            time_end_tensor = torch.tensor([time_end], dtype=torch.float64).to(self.device)

            music_fn = os.path.join(self.result_dir, f'{output_fn}.{output_format}')

            bench_start = time.time()

            if task == 'text-to-music':
                model_input = {
                    "text"           : text,
                    "audio_prompt"   : audio_prompt,
                    "time_start"     : time_start_tensor,
                    "time_end"       : time_end_tensor,
                    "chorus"         : chorus,
                    "task"           : task,
                    "stream"         : False,
                    "duration_to_gen": self.max_generate_audio_seconds,
                    "sr"             : self.sample_rate
                }
            elif task == 'continuation':
                if audio_prompt is not None:
                    audio, _ = process_audio(audio_prompt, self.sample_rate)
                    if audio.size(1) < self.sample_rate:
                        logging.warning("Warning: Input prompt audio length is shorter than 1s. Please provide an appropriate length audio prompt and try again.")
                        audio = None
                    else:
                        max_audio_prompt_length_samples = int(max_audio_prompt_length * self.sample_rate)
                        audio = audio[:, :max_audio_prompt_length_samples]  # Trimming prompt audio

                model_input = {
                    "text"           : text,
                    "audio_prompt"   : audio,
                    "time_start"     : time_start_tensor,
                    "time_end"       : time_end_tensor,
                    "chorus"         : chorus,
                    "task"           : task,
                    "stream"         : False,
                    "duration_to_gen": self.max_generate_audio_seconds,
                    "sr"             : self.sample_rate
                }

            music_audios = []
            for model_output in self.model.cli_inference(**model_input):
                music_audios.append(model_output['music_audio'])

            bench_end = time.time()

            if trim:
                music_audio = trim_audio(music_audios[0],
                                         sample_rate=self.output_sample_rate,
                                         threshold=0.05,
                                         min_silence_duration=0.8)
            else:
                music_audio = music_audios[0]

            if music_audio.shape[0] != 0:
                if music_audio.shape[1] > self.max_generate_audio_length:
                    music_audio = music_audio[:, :self.max_generate_audio_length]

                if music_audio.shape[1] >= self.min_generate_audio_length:
                    try:
                        if fade_out_mode:
                            music_audio = fade_out(music_audio, self.output_sample_rate, fade_out_duration)

                        music_audio = music_audio.repeat(2, 1)

                        if output_format in ["wav", "flac"]:
                            torchaudio.save(music_fn, music_audio,
                                            sample_rate=self.output_sample_rate,
                                            encoding="PCM_S",
                                            bits_per_sample=24)
                        elif output_format in ["mp3", "m4a"]:
                            torchaudio.backend.sox_io_backend.save(
                                filepath=music_fn, src=music_audio,
                                sample_rate=self.output_sample_rate,
                                format=output_format)
                        else:
                            logging.info("Format is not supported. Please choose from wav, mp3, m4a, flac.")

                    except Exception as e:
                        logging.error(f"Error saving file: {e}")
                        raise

                audio_duration = music_audio.shape[1] / self.output_sample_rate
                rtf = (bench_end - bench_start) / audio_duration
                logging.info(f"Processing time: {int(bench_end - bench_start)}s, audio length: {int(audio_duration)}s, rtf: {rtf}, text prompt: {text_prompt}")

            else:
                logging.error(f"Generated audio length is shorter than minimum required audio length.")
        if music_fn:
            if os.path.exists(music_fn):
                logging.info(f"Generated audio file {music_fn} is saved.")
                return music_fn
            else:
                logging.error(f"{music_fn} does not exist.")

def get_args():
    parser = argparse.ArgumentParser(description='Run inference with your model')
    parser.add_argument('-m', '--model_name', default="InspireMusic-1.5B-Long",
                        help='Model name')
    
    parser.add_argument('-d', '--model_dir',
                        help='Model folder path')
    
    parser.add_argument('-t', '--text', default="Experience soothing and sensual instrumental jazz with a touch of Bossa Nova, perfect for a relaxing restaurant or spa ambiance.",
                        help='Prompt text')
    
    parser.add_argument('-a', '--audio_prompt', default=None, 
                        help='Prompt audio')
    
    parser.add_argument('-c', '--chorus', default="intro", 
                        help='Chorus tag generation mode (e.g., random, verse, chorus, intro, outro)')
    
    parser.add_argument('-f', '--fast', type=bool, default=False, 
                        help='Enable fast inference mode (without flow matching)')

    parser.add_argument('-g', '--gpu', type=int, default=0, 
                        help='GPU ID for this rank, -1 for CPU')
    
    parser.add_argument('--task', default='text-to-music', choices=['text-to-music', 'continuation', 'reconstruct', 'super_resolution'],
                        help='Inference task type: text-to-music, continuation, reconstruct, super_resolution')
    
    parser.add_argument('-r', '--result_dir', default="exp/inspiremusic", 
                        help='Directory to save generated audio')
    
    parser.add_argument('-o', '--output_fn', default="output_audio", 
                        help='Output file name')
    
    parser.add_argument('--format', type=str, default="wav", choices=["wav", "mp3", "m4a", "flac"],
                        help='Format of output audio')
    
    parser.add_argument('--sample_rate', type=int, default=24000, 
                        help='Sampling rate of input audio')
    
    parser.add_argument('--output_sample_rate', type=int, default=48000, choices=[24000, 48000],
                        help='Sampling rate of generated output audio')
    
    parser.add_argument('-s', '--time_start', type=float, default=0.0, 
                        help='Start time in seconds')
    
    parser.add_argument('-e', '--time_end', type=float, default=30.0, 
                        help='End time in seconds')
    
    parser.add_argument('--max_audio_prompt_length', type=float, default=5.0, 
                        help='Maximum audio prompt length in seconds')
    
    parser.add_argument('--min_generate_audio_seconds', type=float, default=10.0, 
                        help='Minimum generated audio length in seconds')
    
    parser.add_argument('--max_generate_audio_seconds', type=float, default=300.0,
                        help='Maximum generated audio length in seconds')

    parser.add_argument('--fp16', type=bool, default=True, 
                        help='Inference with fp16 model')
    
    parser.add_argument('--fade_out', type=bool, default=True, 
                        help='Apply fade out effect to generated audio')
    
    parser.add_argument('--fade_out_duration', type=float, default=1.0, 
                        help='Fade out duration in seconds')
    
    parser.add_argument('--trim', type=bool, default=False, 
                        help='Trim the silence ending of generated audio')    

    args = parser.parse_args()

    if not args.model_dir:
        args.model_dir = os.path.join("pretrained_models", args.model_name)

    print(args)
    return args

def main():
    set_env_variables()
    args = get_args()
    model = InspireMusicUnified(model_name = args.model_name,
                 model_dir = args.model_dir,
                 min_generate_audio_seconds = args.min_generate_audio_seconds,
                 max_generate_audio_seconds = args.max_generate_audio_seconds,
                 sample_rate = args.sample_rate,
                 output_sample_rate = args.output_sample_rate,
                 load_jit = True,
                 load_onnx = False,
                 fast = args.fast,
                 fp16 = args.fp16,
                 gpu = args.gpu,
                 result_dir = args.result_dir)

    model.inference(task = args.task,
                text = args.text,
                audio_prompt = args.audio_prompt,
                chorus = args.chorus,
                time_start = args.time_start,
                time_end = args.time_end,
                output_fn = args.output_fn,
                max_audio_prompt_length = args.max_audio_prompt_length,
                fade_out_duration = args.fade_out_duration,
                output_format = args.format,
                fade_out_mode = args.fade_out,
                trim = args.trim)

if __name__ == "__main__":
    main()