Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,382 Bytes
96fe5d9 4851aff 96fe5d9 6a854fa 96fe5d9 69f25ad 96fe5d9 5a9eb30 19e7dfa 96fe5d9 5a9eb30 bac66d6 2c33955 19e7dfa 5a9eb30 bacc813 5a9eb30 bacc813 8e8adbf 5a9eb30 ca1c4b1 96fe5d9 19e7dfa 96fe5d9 acf41f6 957f1a3 acf41f6 96fe5d9 9c6a7bd 96fe5d9 5b58efa 96fe5d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
# Copyright (c) 2024 Alibaba Inc
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import torchaudio
import time
import logging
import argparse
from inspiremusic.cli.inspiremusic import InspireMusic
from inspiremusic.utils.file_utils import logging
import torch
from inspiremusic.utils.audio_utils import trim_audio, fade_out, process_audio
def set_env_variables():
os.environ['PYTHONIOENCODING'] = 'UTF-8'
os.environ['TOKENIZERS_PARALLELISM'] = 'False'
main_root = os.getcwd()
bin_dir = os.path.join(main_root, 'inspiremusic')
third_party_matcha_tts_path = os.path.join(main_root, 'third_party', 'Matcha-TTS')
python_path = f"{main_root}:{bin_dir}:{third_party_matcha_tts_path}:{os.environ.get('PYTHONPATH', '')}"
os.environ['PATH'] = python_path
sys.path.extend([main_root, third_party_matcha_tts_path])
class InspireMusicUnified:
def __init__(self,
model_name: str = "InspireMusic-1.5B-Long",
model_dir: str = None,
min_generate_audio_seconds: float = 10.0,
max_generate_audio_seconds: float = 30.0,
sample_rate: int = 24000,
output_sample_rate: int = 48000,
load_jit: bool = True,
load_onnx: bool = False,
fast: bool = False,
fp16: bool = True,
gpu: int = 0,
result_dir: str = None,
hub="modelscope"):
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu)
# Set model_dir or default to downloading if it doesn't exist
if model_dir is None:
model_dir = f"pretrained_models/{model_name}"
else:
model_dir = model_dir.replace("../../", "./")
if not os.path.isfile(f"{model_dir}/llm.pt"):
if hub == "modelscope":
from modelscope import snapshot_download
if model_name == "InspireMusic-Base":
snapshot_download(f"iic/InspireMusic", local_dir=model_dir)
else:
snapshot_download(f"iic/{model_name}", local_dir=model_dir)
self.model_dir = model_dir
print(self.model_dir)
self.sample_rate = sample_rate
self.output_sample_rate = 24000 if fast else output_sample_rate
self.result_dir = result_dir or f"exp/{model_name}"
os.makedirs(self.result_dir, exist_ok=True)
self.min_generate_audio_seconds = min_generate_audio_seconds
self.max_generate_audio_seconds = max_generate_audio_seconds
self.min_generate_audio_length = int(self.output_sample_rate * self.min_generate_audio_seconds)
self.max_generate_audio_length = int(self.output_sample_rate * self.max_generate_audio_seconds)
assert self.min_generate_audio_seconds <= self.max_generate_audio_seconds, "Min audio seconds must be less than or equal to max audio seconds"
use_cuda = gpu >= 0 and torch.cuda.is_available()
self.device = torch.device('cuda' if use_cuda else 'cpu')
self.model = InspireMusic(self.model_dir, load_jit=load_jit, load_onnx=load_onnx, fast=fast, fp16=fp16)
self.model.model.llm = self.model.model.llm.to(torch.float16)
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
@torch.inference_mode()
def inference(self,
task: str = 'text-to-music',
text: str = None,
audio_prompt: str = None, # audio prompt file path
chorus: str = "verse",
time_start: float = 0.0,
time_end: float = 30.0,
output_fn: str = "output_audio",
max_audio_prompt_length: float = 5.0,
fade_out_duration: float = 1.0,
output_format: str = "wav",
fade_out_mode: bool = True,
trim: bool = False,
):
with torch.no_grad():
text_prompt = f"<|{time_start}|><|{chorus}|><|{text}|><|{time_end}|>"
chorus_dict = {"random": torch.randint(1, 5, (1,)).item(), "intro" : 0, "verse": 1, "chorus": 2, "outro": 4}
chorus = chorus_dict.get(chorus, 1)
chorus = torch.tensor([chorus], dtype=torch.int).to(self.device)
time_start_tensor = torch.tensor([time_start], dtype=torch.float64).to(self.device)
time_end_tensor = torch.tensor([time_end], dtype=torch.float64).to(self.device)
music_fn = os.path.join(self.result_dir, f'{output_fn}.{output_format}')
bench_start = time.time()
if task == 'text-to-music':
model_input = {
"text" : text,
"audio_prompt" : audio_prompt,
"time_start" : time_start_tensor,
"time_end" : time_end_tensor,
"chorus" : chorus,
"task" : task,
"stream" : False,
"duration_to_gen": self.max_generate_audio_seconds,
"sr" : self.sample_rate
}
elif task == 'continuation':
if audio_prompt is not None:
audio, _ = process_audio(audio_prompt, self.sample_rate)
if audio.size(1) < self.sample_rate:
logging.warning("Warning: Input prompt audio length is shorter than 1s. Please provide an appropriate length audio prompt and try again.")
audio = None
else:
max_audio_prompt_length_samples = int(max_audio_prompt_length * self.sample_rate)
audio = audio[:, :max_audio_prompt_length_samples] # Trimming prompt audio
model_input = {
"text" : text,
"audio_prompt" : audio,
"time_start" : time_start_tensor,
"time_end" : time_end_tensor,
"chorus" : chorus,
"task" : task,
"stream" : False,
"duration_to_gen": self.max_generate_audio_seconds,
"sr" : self.sample_rate
}
music_audios = []
for model_output in self.model.cli_inference(**model_input):
music_audios.append(model_output['music_audio'])
bench_end = time.time()
if trim:
music_audio = trim_audio(music_audios[0],
sample_rate=self.output_sample_rate,
threshold=0.05,
min_silence_duration=0.8)
else:
music_audio = music_audios[0]
if music_audio.shape[0] != 0:
if music_audio.shape[1] > self.max_generate_audio_length:
music_audio = music_audio[:, :self.max_generate_audio_length]
if music_audio.shape[1] >= self.min_generate_audio_length:
try:
if fade_out_mode:
music_audio = fade_out(music_audio, self.output_sample_rate, fade_out_duration)
music_audio = music_audio.repeat(2, 1)
if output_format in ["wav", "flac"]:
torchaudio.save(music_fn, music_audio,
sample_rate=self.output_sample_rate,
encoding="PCM_S",
bits_per_sample=24)
elif output_format in ["mp3", "m4a"]:
torchaudio.backend.sox_io_backend.save(
filepath=music_fn, src=music_audio,
sample_rate=self.output_sample_rate,
format=output_format)
else:
logging.info("Format is not supported. Please choose from wav, mp3, m4a, flac.")
except Exception as e:
logging.error(f"Error saving file: {e}")
raise
audio_duration = music_audio.shape[1] / self.output_sample_rate
rtf = (bench_end - bench_start) / audio_duration
logging.info(f"Processing time: {int(bench_end - bench_start)}s, audio length: {int(audio_duration)}s, rtf: {rtf}, text prompt: {text_prompt}")
else:
logging.error(f"Generated audio length is shorter than minimum required audio length.")
if music_fn:
if os.path.exists(music_fn):
logging.info(f"Generated audio file {music_fn} is saved.")
return music_fn
else:
logging.error(f"{music_fn} does not exist.")
def get_args():
parser = argparse.ArgumentParser(description='Run inference with your model')
parser.add_argument('-m', '--model_name', default="InspireMusic-1.5B-Long",
help='Model name')
parser.add_argument('-d', '--model_dir',
help='Model folder path')
parser.add_argument('-t', '--text', default="Experience soothing and sensual instrumental jazz with a touch of Bossa Nova, perfect for a relaxing restaurant or spa ambiance.",
help='Prompt text')
parser.add_argument('-a', '--audio_prompt', default=None,
help='Prompt audio')
parser.add_argument('-c', '--chorus', default="intro",
help='Chorus tag generation mode (e.g., random, verse, chorus, intro, outro)')
parser.add_argument('-f', '--fast', type=bool, default=False,
help='Enable fast inference mode (without flow matching)')
parser.add_argument('-g', '--gpu', type=int, default=0,
help='GPU ID for this rank, -1 for CPU')
parser.add_argument('--task', default='text-to-music', choices=['text-to-music', 'continuation', 'reconstruct', 'super_resolution'],
help='Inference task type: text-to-music, continuation, reconstruct, super_resolution')
parser.add_argument('-r', '--result_dir', default="exp/inspiremusic",
help='Directory to save generated audio')
parser.add_argument('-o', '--output_fn', default="output_audio",
help='Output file name')
parser.add_argument('--format', type=str, default="wav", choices=["wav", "mp3", "m4a", "flac"],
help='Format of output audio')
parser.add_argument('--sample_rate', type=int, default=24000,
help='Sampling rate of input audio')
parser.add_argument('--output_sample_rate', type=int, default=48000, choices=[24000, 48000],
help='Sampling rate of generated output audio')
parser.add_argument('-s', '--time_start', type=float, default=0.0,
help='Start time in seconds')
parser.add_argument('-e', '--time_end', type=float, default=30.0,
help='End time in seconds')
parser.add_argument('--max_audio_prompt_length', type=float, default=5.0,
help='Maximum audio prompt length in seconds')
parser.add_argument('--min_generate_audio_seconds', type=float, default=10.0,
help='Minimum generated audio length in seconds')
parser.add_argument('--max_generate_audio_seconds', type=float, default=300.0,
help='Maximum generated audio length in seconds')
parser.add_argument('--fp16', type=bool, default=True,
help='Inference with fp16 model')
parser.add_argument('--fade_out', type=bool, default=True,
help='Apply fade out effect to generated audio')
parser.add_argument('--fade_out_duration', type=float, default=1.0,
help='Fade out duration in seconds')
parser.add_argument('--trim', type=bool, default=False,
help='Trim the silence ending of generated audio')
args = parser.parse_args()
if not args.model_dir:
args.model_dir = os.path.join("pretrained_models", args.model_name)
print(args)
return args
def main():
set_env_variables()
args = get_args()
model = InspireMusicUnified(model_name = args.model_name,
model_dir = args.model_dir,
min_generate_audio_seconds = args.min_generate_audio_seconds,
max_generate_audio_seconds = args.max_generate_audio_seconds,
sample_rate = args.sample_rate,
output_sample_rate = args.output_sample_rate,
load_jit = True,
load_onnx = False,
fast = args.fast,
fp16 = args.fp16,
gpu = args.gpu,
result_dir = args.result_dir)
model.inference(task = args.task,
text = args.text,
audio_prompt = args.audio_prompt,
chorus = args.chorus,
time_start = args.time_start,
time_end = args.time_end,
output_fn = args.output_fn,
max_audio_prompt_length = args.max_audio_prompt_length,
fade_out_duration = args.fade_out_duration,
output_format = args.format,
fade_out_mode = args.fade_out,
trim = args.trim)
if __name__ == "__main__":
main() |