Spaces:
Configuration error
Configuration error
| from io import BytesIO | |
| from time import perf_counter | |
| from typing import Any, List, Tuple, Union | |
| import numpy as np | |
| from PIL import Image, ImageDraw, ImageFont | |
| from inference.core.entities.requests.inference import ClassificationInferenceRequest | |
| from inference.core.entities.responses.inference import ( | |
| ClassificationInferenceResponse, | |
| InferenceResponse, | |
| InferenceResponseImage, | |
| MultiLabelClassificationInferenceResponse, | |
| ) | |
| from inference.core.models.roboflow import OnnxRoboflowInferenceModel | |
| from inference.core.models.types import PreprocessReturnMetadata | |
| from inference.core.models.utils.validate import ( | |
| get_num_classes_from_model_prediction_shape, | |
| ) | |
| from inference.core.utils.image_utils import load_image_rgb | |
| class ClassificationBaseOnnxRoboflowInferenceModel(OnnxRoboflowInferenceModel): | |
| """Base class for ONNX models for Roboflow classification inference. | |
| Attributes: | |
| multiclass (bool): Whether the classification is multi-class or not. | |
| Methods: | |
| get_infer_bucket_file_list() -> list: Get the list of required files for inference. | |
| softmax(x): Compute softmax values for a given set of scores. | |
| infer(request: ClassificationInferenceRequest) -> Union[List[Union[ClassificationInferenceResponse, MultiLabelClassificationInferenceResponse]], Union[ClassificationInferenceResponse, MultiLabelClassificationInferenceResponse]]: Perform inference on a given request and return the response. | |
| draw_predictions(inference_request, inference_response): Draw prediction visuals on an image. | |
| """ | |
| task_type = "classification" | |
| def __init__(self, *args, **kwargs): | |
| """Initialize the model, setting whether it is multiclass or not.""" | |
| super().__init__(*args, **kwargs) | |
| self.multiclass = self.environment.get("MULTICLASS", False) | |
| def draw_predictions(self, inference_request, inference_response): | |
| """Draw prediction visuals on an image. | |
| This method overlays the predictions on the input image, including drawing rectangles and text to visualize the predicted classes. | |
| Args: | |
| inference_request: The request object containing the image and parameters. | |
| inference_response: The response object containing the predictions and other details. | |
| Returns: | |
| bytes: The bytes of the visualized image in JPEG format. | |
| """ | |
| image = load_image_rgb(inference_request.image) | |
| image = Image.fromarray(image) | |
| draw = ImageDraw.Draw(image) | |
| font = ImageFont.load_default() | |
| if isinstance(inference_response.predictions, list): | |
| prediction = inference_response.predictions[0] | |
| color = self.colors.get(prediction.class_name, "#4892EA") | |
| draw.rectangle( | |
| [0, 0, image.size[1], image.size[0]], | |
| outline=color, | |
| width=inference_request.visualization_stroke_width, | |
| ) | |
| text = f"{prediction.class_id} - {prediction.class_name} {prediction.confidence:.2f}" | |
| text_size = font.getbbox(text) | |
| # set button size + 10px margins | |
| button_size = (text_size[2] + 20, text_size[3] + 20) | |
| button_img = Image.new("RGBA", button_size, color) | |
| # put text on button with 10px margins | |
| button_draw = ImageDraw.Draw(button_img) | |
| button_draw.text((10, 10), text, font=font, fill=(255, 255, 255, 255)) | |
| # put button on source image in position (0, 0) | |
| image.paste(button_img, (0, 0)) | |
| else: | |
| if len(inference_response.predictions) > 0: | |
| box_color = "#4892EA" | |
| draw.rectangle( | |
| [0, 0, image.size[1], image.size[0]], | |
| outline=box_color, | |
| width=inference_request.visualization_stroke_width, | |
| ) | |
| row = 0 | |
| predictions = [ | |
| (cls_name, pred) | |
| for cls_name, pred in inference_response.predictions.items() | |
| ] | |
| predictions = sorted( | |
| predictions, key=lambda x: x[1].confidence, reverse=True | |
| ) | |
| for i, (cls_name, pred) in enumerate(predictions): | |
| color = self.colors.get(cls_name, "#4892EA") | |
| text = f"{cls_name} {pred.confidence:.2f}" | |
| text_size = font.getbbox(text) | |
| # set button size + 10px margins | |
| button_size = (text_size[2] + 20, text_size[3] + 20) | |
| button_img = Image.new("RGBA", button_size, color) | |
| # put text on button with 10px margins | |
| button_draw = ImageDraw.Draw(button_img) | |
| button_draw.text((10, 10), text, font=font, fill=(255, 255, 255, 255)) | |
| # put button on source image in position (0, 0) | |
| image.paste(button_img, (0, row)) | |
| row += button_size[1] | |
| buffered = BytesIO() | |
| image = image.convert("RGB") | |
| image.save(buffered, format="JPEG") | |
| return buffered.getvalue() | |
| def get_infer_bucket_file_list(self) -> list: | |
| """Get the list of required files for inference. | |
| Returns: | |
| list: A list of required files for inference, e.g., ["environment.json"]. | |
| """ | |
| return ["environment.json"] | |
| def infer( | |
| self, | |
| image: Any, | |
| disable_preproc_auto_orient: bool = False, | |
| disable_preproc_contrast: bool = False, | |
| disable_preproc_grayscale: bool = False, | |
| disable_preproc_static_crop: bool = False, | |
| return_image_dims: bool = False, | |
| **kwargs, | |
| ): | |
| """ | |
| Perform inference on the provided image(s) and return the predictions. | |
| Args: | |
| image (Any): The image or list of images to be processed. | |
| disable_preproc_auto_orient (bool, optional): If true, the auto orient preprocessing step is disabled for this call. Default is False. | |
| disable_preproc_contrast (bool, optional): If true, the auto contrast preprocessing step is disabled for this call. Default is False. | |
| disable_preproc_grayscale (bool, optional): If true, the grayscale preprocessing step is disabled for this call. Default is False. | |
| disable_preproc_static_crop (bool, optional): If true, the static crop preprocessing step is disabled for this call. Default is False. | |
| return_image_dims (bool, optional): If set to True, the function will also return the dimensions of the image. Defaults to False. | |
| **kwargs: Additional parameters to customize the inference process. | |
| Returns: | |
| Union[List[np.array], np.array, Tuple[List[np.array], List[Tuple[int, int]]], Tuple[np.array, Tuple[int, int]]]: | |
| If `return_image_dims` is True and a list of images is provided, a tuple containing a list of prediction arrays and a list of image dimensions (width, height) is returned. | |
| If `return_image_dims` is True and a single image is provided, a tuple containing the prediction array and image dimensions (width, height) is returned. | |
| If `return_image_dims` is False and a list of images is provided, only the list of prediction arrays is returned. | |
| If `return_image_dims` is False and a single image is provided, only the prediction array is returned. | |
| Notes: | |
| - The input image(s) will be preprocessed (normalized and reshaped) before inference. | |
| - This function uses an ONNX session to perform inference on the input image(s). | |
| """ | |
| return super().infer( | |
| image, | |
| disable_preproc_auto_orient=disable_preproc_auto_orient, | |
| disable_preproc_contrast=disable_preproc_contrast, | |
| disable_preproc_grayscale=disable_preproc_grayscale, | |
| disable_preproc_static_crop=disable_preproc_static_crop, | |
| return_image_dims=return_image_dims, | |
| ) | |
| def postprocess( | |
| self, | |
| predictions: Tuple[np.ndarray], | |
| preprocess_return_metadata: PreprocessReturnMetadata, | |
| return_image_dims=False, | |
| **kwargs, | |
| ) -> Union[ClassificationInferenceResponse, List[ClassificationInferenceResponse]]: | |
| predictions = predictions[0] | |
| return self.make_response( | |
| predictions, preprocess_return_metadata["img_dims"], **kwargs | |
| ) | |
| def predict(self, img_in: np.ndarray, **kwargs) -> Tuple[np.ndarray]: | |
| predictions = self.onnx_session.run(None, {self.input_name: img_in}) | |
| return (predictions,) | |
| def preprocess( | |
| self, image: Any, **kwargs | |
| ) -> Tuple[np.ndarray, PreprocessReturnMetadata]: | |
| if isinstance(image, list): | |
| imgs_with_dims = [ | |
| self.preproc_image( | |
| i, | |
| disable_preproc_auto_orient=kwargs.get( | |
| "disable_preproc_auto_orient", False | |
| ), | |
| disable_preproc_contrast=kwargs.get( | |
| "disable_preproc_contrast", False | |
| ), | |
| disable_preproc_grayscale=kwargs.get( | |
| "disable_preproc_grayscale", False | |
| ), | |
| disable_preproc_static_crop=kwargs.get( | |
| "disable_preproc_static_crop", False | |
| ), | |
| ) | |
| for i in image | |
| ] | |
| imgs, img_dims = zip(*imgs_with_dims) | |
| img_in = np.concatenate(imgs, axis=0) | |
| else: | |
| img_in, img_dims = self.preproc_image( | |
| image, | |
| disable_preproc_auto_orient=kwargs.get( | |
| "disable_preproc_auto_orient", False | |
| ), | |
| disable_preproc_contrast=kwargs.get("disable_preproc_contrast", False), | |
| disable_preproc_grayscale=kwargs.get( | |
| "disable_preproc_grayscale", False | |
| ), | |
| disable_preproc_static_crop=kwargs.get( | |
| "disable_preproc_static_crop", False | |
| ), | |
| ) | |
| img_dims = [img_dims] | |
| img_in /= 255.0 | |
| mean = (0.5, 0.5, 0.5) | |
| std = (0.5, 0.5, 0.5) | |
| img_in = img_in.astype(np.float32) | |
| img_in[:, 0, :, :] = (img_in[:, 0, :, :] - mean[0]) / std[0] | |
| img_in[:, 1, :, :] = (img_in[:, 1, :, :] - mean[1]) / std[1] | |
| img_in[:, 2, :, :] = (img_in[:, 2, :, :] - mean[2]) / std[2] | |
| return img_in, PreprocessReturnMetadata({"img_dims": img_dims}) | |
| def infer_from_request( | |
| self, | |
| request: ClassificationInferenceRequest, | |
| ) -> Union[List[InferenceResponse], InferenceResponse]: | |
| """ | |
| Handle an inference request to produce an appropriate response. | |
| Args: | |
| request (ClassificationInferenceRequest): The request object encapsulating the image(s) and relevant parameters. | |
| Returns: | |
| Union[List[InferenceResponse], InferenceResponse]: The response object(s) containing the predictions, visualization, and other pertinent details. If a list of images was provided, a list of responses is returned. Otherwise, a single response is returned. | |
| Notes: | |
| - Starts a timer at the beginning to calculate inference time. | |
| - Processes the image(s) through the `infer` method. | |
| - Generates the appropriate response object(s) using `make_response`. | |
| - Calculates and sets the time taken for inference. | |
| - If visualization is requested, the predictions are drawn on the image. | |
| """ | |
| t1 = perf_counter() | |
| responses = self.infer(**request.dict(), return_image_dims=True) | |
| for response in responses: | |
| response.time = perf_counter() - t1 | |
| if request.visualize_predictions: | |
| for response in responses: | |
| response.visualization = self.draw_predictions(request, response) | |
| if not isinstance(request.image, list): | |
| responses = responses[0] | |
| return responses | |
| def make_response( | |
| self, | |
| predictions, | |
| img_dims, | |
| confidence: float = 0.5, | |
| **kwargs, | |
| ) -> Union[ClassificationInferenceResponse, List[ClassificationInferenceResponse]]: | |
| """ | |
| Create response objects for the given predictions and image dimensions. | |
| Args: | |
| predictions (list): List of prediction arrays from the inference process. | |
| img_dims (list): List of tuples indicating the dimensions (width, height) of each image. | |
| confidence (float, optional): Confidence threshold for filtering predictions. Defaults to 0.5. | |
| **kwargs: Additional parameters to influence the response creation process. | |
| Returns: | |
| Union[ClassificationInferenceResponse, List[ClassificationInferenceResponse]]: A response object or a list of response objects encapsulating the prediction details. | |
| Notes: | |
| - If the model is multiclass, a `MultiLabelClassificationInferenceResponse` is generated for each image. | |
| - If the model is not multiclass, a `ClassificationInferenceResponse` is generated for each image. | |
| - Predictions below the confidence threshold are filtered out. | |
| """ | |
| responses = [] | |
| confidence_threshold = float(confidence) | |
| for ind, prediction in enumerate(predictions): | |
| if self.multiclass: | |
| preds = prediction[0] | |
| results = dict() | |
| predicted_classes = [] | |
| for i, o in enumerate(preds): | |
| cls_name = self.class_names[i] | |
| score = float(o) | |
| results[cls_name] = {"confidence": score, "class_id": i} | |
| if score > confidence_threshold: | |
| predicted_classes.append(cls_name) | |
| response = MultiLabelClassificationInferenceResponse( | |
| image=InferenceResponseImage( | |
| width=img_dims[ind][0], height=img_dims[ind][1] | |
| ), | |
| predicted_classes=predicted_classes, | |
| predictions=results, | |
| ) | |
| else: | |
| preds = prediction[0] | |
| preds = self.softmax(preds) | |
| results = [] | |
| for i, cls_name in enumerate(self.class_names): | |
| score = float(preds[i]) | |
| pred = { | |
| "class_id": i, | |
| "class": cls_name, | |
| "confidence": round(score, 4), | |
| } | |
| results.append(pred) | |
| results = sorted(results, key=lambda x: x["confidence"], reverse=True) | |
| response = ClassificationInferenceResponse( | |
| image=InferenceResponseImage( | |
| width=img_dims[ind][1], height=img_dims[ind][0] | |
| ), | |
| predictions=results, | |
| top=results[0]["class"], | |
| confidence=results[0]["confidence"], | |
| ) | |
| responses.append(response) | |
| return responses | |
| def softmax(x): | |
| """Compute softmax values for each set of scores in x. | |
| Args: | |
| x (np.array): The input array containing the scores. | |
| Returns: | |
| np.array: The softmax values for each set of scores. | |
| """ | |
| e_x = np.exp(x - np.max(x)) | |
| return e_x / e_x.sum() | |
| def get_model_output_shape(self) -> Tuple[int, int, int]: | |
| test_image = (np.random.rand(1024, 1024, 3) * 255).astype(np.uint8) | |
| test_image, _ = self.preprocess(test_image) | |
| output = np.array(self.predict(test_image)) | |
| return output.shape | |
| def validate_model_classes(self) -> None: | |
| output_shape = self.get_model_output_shape() | |
| num_classes = output_shape[3] | |
| try: | |
| assert num_classes == self.num_classes | |
| except AssertionError: | |
| raise ValueError( | |
| f"Number of classes in model ({num_classes}) does not match the number of classes in the environment ({self.num_classes})" | |
| ) | |