Spaces:
Runtime error
Runtime error
from io import BytesIO | |
from time import perf_counter | |
from typing import Any, List, Tuple, Union | |
import numpy as np | |
from PIL import Image, ImageDraw, ImageFont | |
from inference.core.entities.requests.inference import ClassificationInferenceRequest | |
from inference.core.entities.responses.inference import ( | |
ClassificationInferenceResponse, | |
InferenceResponse, | |
InferenceResponseImage, | |
MultiLabelClassificationInferenceResponse, | |
) | |
from inference.core.models.roboflow import OnnxRoboflowInferenceModel | |
from inference.core.models.types import PreprocessReturnMetadata | |
from inference.core.models.utils.validate import ( | |
get_num_classes_from_model_prediction_shape, | |
) | |
from inference.core.utils.image_utils import load_image_rgb | |
class ClassificationBaseOnnxRoboflowInferenceModel(OnnxRoboflowInferenceModel): | |
"""Base class for ONNX models for Roboflow classification inference. | |
Attributes: | |
multiclass (bool): Whether the classification is multi-class or not. | |
Methods: | |
get_infer_bucket_file_list() -> list: Get the list of required files for inference. | |
softmax(x): Compute softmax values for a given set of scores. | |
infer(request: ClassificationInferenceRequest) -> Union[List[Union[ClassificationInferenceResponse, MultiLabelClassificationInferenceResponse]], Union[ClassificationInferenceResponse, MultiLabelClassificationInferenceResponse]]: Perform inference on a given request and return the response. | |
draw_predictions(inference_request, inference_response): Draw prediction visuals on an image. | |
""" | |
task_type = "classification" | |
def __init__(self, *args, **kwargs): | |
"""Initialize the model, setting whether it is multiclass or not.""" | |
super().__init__(*args, **kwargs) | |
self.multiclass = self.environment.get("MULTICLASS", False) | |
def draw_predictions(self, inference_request, inference_response): | |
"""Draw prediction visuals on an image. | |
This method overlays the predictions on the input image, including drawing rectangles and text to visualize the predicted classes. | |
Args: | |
inference_request: The request object containing the image and parameters. | |
inference_response: The response object containing the predictions and other details. | |
Returns: | |
bytes: The bytes of the visualized image in JPEG format. | |
""" | |
image = load_image_rgb(inference_request.image) | |
image = Image.fromarray(image) | |
draw = ImageDraw.Draw(image) | |
font = ImageFont.load_default() | |
if isinstance(inference_response.predictions, list): | |
prediction = inference_response.predictions[0] | |
color = self.colors.get(prediction.class_name, "#4892EA") | |
draw.rectangle( | |
[0, 0, image.size[1], image.size[0]], | |
outline=color, | |
width=inference_request.visualization_stroke_width, | |
) | |
text = f"{prediction.class_id} - {prediction.class_name} {prediction.confidence:.2f}" | |
text_size = font.getbbox(text) | |
# set button size + 10px margins | |
button_size = (text_size[2] + 20, text_size[3] + 20) | |
button_img = Image.new("RGBA", button_size, color) | |
# put text on button with 10px margins | |
button_draw = ImageDraw.Draw(button_img) | |
button_draw.text((10, 10), text, font=font, fill=(255, 255, 255, 255)) | |
# put button on source image in position (0, 0) | |
image.paste(button_img, (0, 0)) | |
else: | |
if len(inference_response.predictions) > 0: | |
box_color = "#4892EA" | |
draw.rectangle( | |
[0, 0, image.size[1], image.size[0]], | |
outline=box_color, | |
width=inference_request.visualization_stroke_width, | |
) | |
row = 0 | |
predictions = [ | |
(cls_name, pred) | |
for cls_name, pred in inference_response.predictions.items() | |
] | |
predictions = sorted( | |
predictions, key=lambda x: x[1].confidence, reverse=True | |
) | |
for i, (cls_name, pred) in enumerate(predictions): | |
color = self.colors.get(cls_name, "#4892EA") | |
text = f"{cls_name} {pred.confidence:.2f}" | |
text_size = font.getbbox(text) | |
# set button size + 10px margins | |
button_size = (text_size[2] + 20, text_size[3] + 20) | |
button_img = Image.new("RGBA", button_size, color) | |
# put text on button with 10px margins | |
button_draw = ImageDraw.Draw(button_img) | |
button_draw.text((10, 10), text, font=font, fill=(255, 255, 255, 255)) | |
# put button on source image in position (0, 0) | |
image.paste(button_img, (0, row)) | |
row += button_size[1] | |
buffered = BytesIO() | |
image = image.convert("RGB") | |
image.save(buffered, format="JPEG") | |
return buffered.getvalue() | |
def get_infer_bucket_file_list(self) -> list: | |
"""Get the list of required files for inference. | |
Returns: | |
list: A list of required files for inference, e.g., ["environment.json"]. | |
""" | |
return ["environment.json"] | |
def infer( | |
self, | |
image: Any, | |
disable_preproc_auto_orient: bool = False, | |
disable_preproc_contrast: bool = False, | |
disable_preproc_grayscale: bool = False, | |
disable_preproc_static_crop: bool = False, | |
return_image_dims: bool = False, | |
**kwargs, | |
): | |
""" | |
Perform inference on the provided image(s) and return the predictions. | |
Args: | |
image (Any): The image or list of images to be processed. | |
disable_preproc_auto_orient (bool, optional): If true, the auto orient preprocessing step is disabled for this call. Default is False. | |
disable_preproc_contrast (bool, optional): If true, the auto contrast preprocessing step is disabled for this call. Default is False. | |
disable_preproc_grayscale (bool, optional): If true, the grayscale preprocessing step is disabled for this call. Default is False. | |
disable_preproc_static_crop (bool, optional): If true, the static crop preprocessing step is disabled for this call. Default is False. | |
return_image_dims (bool, optional): If set to True, the function will also return the dimensions of the image. Defaults to False. | |
**kwargs: Additional parameters to customize the inference process. | |
Returns: | |
Union[List[np.array], np.array, Tuple[List[np.array], List[Tuple[int, int]]], Tuple[np.array, Tuple[int, int]]]: | |
If `return_image_dims` is True and a list of images is provided, a tuple containing a list of prediction arrays and a list of image dimensions (width, height) is returned. | |
If `return_image_dims` is True and a single image is provided, a tuple containing the prediction array and image dimensions (width, height) is returned. | |
If `return_image_dims` is False and a list of images is provided, only the list of prediction arrays is returned. | |
If `return_image_dims` is False and a single image is provided, only the prediction array is returned. | |
Notes: | |
- The input image(s) will be preprocessed (normalized and reshaped) before inference. | |
- This function uses an ONNX session to perform inference on the input image(s). | |
""" | |
return super().infer( | |
image, | |
disable_preproc_auto_orient=disable_preproc_auto_orient, | |
disable_preproc_contrast=disable_preproc_contrast, | |
disable_preproc_grayscale=disable_preproc_grayscale, | |
disable_preproc_static_crop=disable_preproc_static_crop, | |
return_image_dims=return_image_dims, | |
) | |
def postprocess( | |
self, | |
predictions: Tuple[np.ndarray], | |
preprocess_return_metadata: PreprocessReturnMetadata, | |
return_image_dims=False, | |
**kwargs, | |
) -> Union[ClassificationInferenceResponse, List[ClassificationInferenceResponse]]: | |
predictions = predictions[0] | |
return self.make_response( | |
predictions, preprocess_return_metadata["img_dims"], **kwargs | |
) | |
def predict(self, img_in: np.ndarray, **kwargs) -> Tuple[np.ndarray]: | |
predictions = self.onnx_session.run(None, {self.input_name: img_in}) | |
return (predictions,) | |
def preprocess( | |
self, image: Any, **kwargs | |
) -> Tuple[np.ndarray, PreprocessReturnMetadata]: | |
if isinstance(image, list): | |
imgs_with_dims = [ | |
self.preproc_image( | |
i, | |
disable_preproc_auto_orient=kwargs.get( | |
"disable_preproc_auto_orient", False | |
), | |
disable_preproc_contrast=kwargs.get( | |
"disable_preproc_contrast", False | |
), | |
disable_preproc_grayscale=kwargs.get( | |
"disable_preproc_grayscale", False | |
), | |
disable_preproc_static_crop=kwargs.get( | |
"disable_preproc_static_crop", False | |
), | |
) | |
for i in image | |
] | |
imgs, img_dims = zip(*imgs_with_dims) | |
img_in = np.concatenate(imgs, axis=0) | |
else: | |
img_in, img_dims = self.preproc_image( | |
image, | |
disable_preproc_auto_orient=kwargs.get( | |
"disable_preproc_auto_orient", False | |
), | |
disable_preproc_contrast=kwargs.get("disable_preproc_contrast", False), | |
disable_preproc_grayscale=kwargs.get( | |
"disable_preproc_grayscale", False | |
), | |
disable_preproc_static_crop=kwargs.get( | |
"disable_preproc_static_crop", False | |
), | |
) | |
img_dims = [img_dims] | |
img_in /= 255.0 | |
mean = (0.5, 0.5, 0.5) | |
std = (0.5, 0.5, 0.5) | |
img_in = img_in.astype(np.float32) | |
img_in[:, 0, :, :] = (img_in[:, 0, :, :] - mean[0]) / std[0] | |
img_in[:, 1, :, :] = (img_in[:, 1, :, :] - mean[1]) / std[1] | |
img_in[:, 2, :, :] = (img_in[:, 2, :, :] - mean[2]) / std[2] | |
return img_in, PreprocessReturnMetadata({"img_dims": img_dims}) | |
def infer_from_request( | |
self, | |
request: ClassificationInferenceRequest, | |
) -> Union[List[InferenceResponse], InferenceResponse]: | |
""" | |
Handle an inference request to produce an appropriate response. | |
Args: | |
request (ClassificationInferenceRequest): The request object encapsulating the image(s) and relevant parameters. | |
Returns: | |
Union[List[InferenceResponse], InferenceResponse]: The response object(s) containing the predictions, visualization, and other pertinent details. If a list of images was provided, a list of responses is returned. Otherwise, a single response is returned. | |
Notes: | |
- Starts a timer at the beginning to calculate inference time. | |
- Processes the image(s) through the `infer` method. | |
- Generates the appropriate response object(s) using `make_response`. | |
- Calculates and sets the time taken for inference. | |
- If visualization is requested, the predictions are drawn on the image. | |
""" | |
t1 = perf_counter() | |
responses = self.infer(**request.dict(), return_image_dims=True) | |
for response in responses: | |
response.time = perf_counter() - t1 | |
if request.visualize_predictions: | |
for response in responses: | |
response.visualization = self.draw_predictions(request, response) | |
if not isinstance(request.image, list): | |
responses = responses[0] | |
return responses | |
def make_response( | |
self, | |
predictions, | |
img_dims, | |
confidence: float = 0.5, | |
**kwargs, | |
) -> Union[ClassificationInferenceResponse, List[ClassificationInferenceResponse]]: | |
""" | |
Create response objects for the given predictions and image dimensions. | |
Args: | |
predictions (list): List of prediction arrays from the inference process. | |
img_dims (list): List of tuples indicating the dimensions (width, height) of each image. | |
confidence (float, optional): Confidence threshold for filtering predictions. Defaults to 0.5. | |
**kwargs: Additional parameters to influence the response creation process. | |
Returns: | |
Union[ClassificationInferenceResponse, List[ClassificationInferenceResponse]]: A response object or a list of response objects encapsulating the prediction details. | |
Notes: | |
- If the model is multiclass, a `MultiLabelClassificationInferenceResponse` is generated for each image. | |
- If the model is not multiclass, a `ClassificationInferenceResponse` is generated for each image. | |
- Predictions below the confidence threshold are filtered out. | |
""" | |
responses = [] | |
confidence_threshold = float(confidence) | |
for ind, prediction in enumerate(predictions): | |
if self.multiclass: | |
preds = prediction[0] | |
results = dict() | |
predicted_classes = [] | |
for i, o in enumerate(preds): | |
cls_name = self.class_names[i] | |
score = float(o) | |
results[cls_name] = {"confidence": score, "class_id": i} | |
if score > confidence_threshold: | |
predicted_classes.append(cls_name) | |
response = MultiLabelClassificationInferenceResponse( | |
image=InferenceResponseImage( | |
width=img_dims[ind][0], height=img_dims[ind][1] | |
), | |
predicted_classes=predicted_classes, | |
predictions=results, | |
) | |
else: | |
preds = prediction[0] | |
preds = self.softmax(preds) | |
results = [] | |
for i, cls_name in enumerate(self.class_names): | |
score = float(preds[i]) | |
pred = { | |
"class_id": i, | |
"class": cls_name, | |
"confidence": round(score, 4), | |
} | |
results.append(pred) | |
results = sorted(results, key=lambda x: x["confidence"], reverse=True) | |
response = ClassificationInferenceResponse( | |
image=InferenceResponseImage( | |
width=img_dims[ind][1], height=img_dims[ind][0] | |
), | |
predictions=results, | |
top=results[0]["class"], | |
confidence=results[0]["confidence"], | |
) | |
responses.append(response) | |
return responses | |
def softmax(x): | |
"""Compute softmax values for each set of scores in x. | |
Args: | |
x (np.array): The input array containing the scores. | |
Returns: | |
np.array: The softmax values for each set of scores. | |
""" | |
e_x = np.exp(x - np.max(x)) | |
return e_x / e_x.sum() | |
def get_model_output_shape(self) -> Tuple[int, int, int]: | |
test_image = (np.random.rand(1024, 1024, 3) * 255).astype(np.uint8) | |
test_image, _ = self.preprocess(test_image) | |
output = np.array(self.predict(test_image)) | |
return output.shape | |
def validate_model_classes(self) -> None: | |
output_shape = self.get_model_output_shape() | |
num_classes = output_shape[3] | |
try: | |
assert num_classes == self.num_classes | |
except AssertionError: | |
raise ValueError( | |
f"Number of classes in model ({num_classes}) does not match the number of classes in the environment ({self.num_classes})" | |
) | |