Spaces:
Runtime error
Runtime error
File size: 16,272 Bytes
2eafbc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
from io import BytesIO
from time import perf_counter
from typing import Any, List, Tuple, Union
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from inference.core.entities.requests.inference import ClassificationInferenceRequest
from inference.core.entities.responses.inference import (
ClassificationInferenceResponse,
InferenceResponse,
InferenceResponseImage,
MultiLabelClassificationInferenceResponse,
)
from inference.core.models.roboflow import OnnxRoboflowInferenceModel
from inference.core.models.types import PreprocessReturnMetadata
from inference.core.models.utils.validate import (
get_num_classes_from_model_prediction_shape,
)
from inference.core.utils.image_utils import load_image_rgb
class ClassificationBaseOnnxRoboflowInferenceModel(OnnxRoboflowInferenceModel):
"""Base class for ONNX models for Roboflow classification inference.
Attributes:
multiclass (bool): Whether the classification is multi-class or not.
Methods:
get_infer_bucket_file_list() -> list: Get the list of required files for inference.
softmax(x): Compute softmax values for a given set of scores.
infer(request: ClassificationInferenceRequest) -> Union[List[Union[ClassificationInferenceResponse, MultiLabelClassificationInferenceResponse]], Union[ClassificationInferenceResponse, MultiLabelClassificationInferenceResponse]]: Perform inference on a given request and return the response.
draw_predictions(inference_request, inference_response): Draw prediction visuals on an image.
"""
task_type = "classification"
def __init__(self, *args, **kwargs):
"""Initialize the model, setting whether it is multiclass or not."""
super().__init__(*args, **kwargs)
self.multiclass = self.environment.get("MULTICLASS", False)
def draw_predictions(self, inference_request, inference_response):
"""Draw prediction visuals on an image.
This method overlays the predictions on the input image, including drawing rectangles and text to visualize the predicted classes.
Args:
inference_request: The request object containing the image and parameters.
inference_response: The response object containing the predictions and other details.
Returns:
bytes: The bytes of the visualized image in JPEG format.
"""
image = load_image_rgb(inference_request.image)
image = Image.fromarray(image)
draw = ImageDraw.Draw(image)
font = ImageFont.load_default()
if isinstance(inference_response.predictions, list):
prediction = inference_response.predictions[0]
color = self.colors.get(prediction.class_name, "#4892EA")
draw.rectangle(
[0, 0, image.size[1], image.size[0]],
outline=color,
width=inference_request.visualization_stroke_width,
)
text = f"{prediction.class_id} - {prediction.class_name} {prediction.confidence:.2f}"
text_size = font.getbbox(text)
# set button size + 10px margins
button_size = (text_size[2] + 20, text_size[3] + 20)
button_img = Image.new("RGBA", button_size, color)
# put text on button with 10px margins
button_draw = ImageDraw.Draw(button_img)
button_draw.text((10, 10), text, font=font, fill=(255, 255, 255, 255))
# put button on source image in position (0, 0)
image.paste(button_img, (0, 0))
else:
if len(inference_response.predictions) > 0:
box_color = "#4892EA"
draw.rectangle(
[0, 0, image.size[1], image.size[0]],
outline=box_color,
width=inference_request.visualization_stroke_width,
)
row = 0
predictions = [
(cls_name, pred)
for cls_name, pred in inference_response.predictions.items()
]
predictions = sorted(
predictions, key=lambda x: x[1].confidence, reverse=True
)
for i, (cls_name, pred) in enumerate(predictions):
color = self.colors.get(cls_name, "#4892EA")
text = f"{cls_name} {pred.confidence:.2f}"
text_size = font.getbbox(text)
# set button size + 10px margins
button_size = (text_size[2] + 20, text_size[3] + 20)
button_img = Image.new("RGBA", button_size, color)
# put text on button with 10px margins
button_draw = ImageDraw.Draw(button_img)
button_draw.text((10, 10), text, font=font, fill=(255, 255, 255, 255))
# put button on source image in position (0, 0)
image.paste(button_img, (0, row))
row += button_size[1]
buffered = BytesIO()
image = image.convert("RGB")
image.save(buffered, format="JPEG")
return buffered.getvalue()
def get_infer_bucket_file_list(self) -> list:
"""Get the list of required files for inference.
Returns:
list: A list of required files for inference, e.g., ["environment.json"].
"""
return ["environment.json"]
def infer(
self,
image: Any,
disable_preproc_auto_orient: bool = False,
disable_preproc_contrast: bool = False,
disable_preproc_grayscale: bool = False,
disable_preproc_static_crop: bool = False,
return_image_dims: bool = False,
**kwargs,
):
"""
Perform inference on the provided image(s) and return the predictions.
Args:
image (Any): The image or list of images to be processed.
disable_preproc_auto_orient (bool, optional): If true, the auto orient preprocessing step is disabled for this call. Default is False.
disable_preproc_contrast (bool, optional): If true, the auto contrast preprocessing step is disabled for this call. Default is False.
disable_preproc_grayscale (bool, optional): If true, the grayscale preprocessing step is disabled for this call. Default is False.
disable_preproc_static_crop (bool, optional): If true, the static crop preprocessing step is disabled for this call. Default is False.
return_image_dims (bool, optional): If set to True, the function will also return the dimensions of the image. Defaults to False.
**kwargs: Additional parameters to customize the inference process.
Returns:
Union[List[np.array], np.array, Tuple[List[np.array], List[Tuple[int, int]]], Tuple[np.array, Tuple[int, int]]]:
If `return_image_dims` is True and a list of images is provided, a tuple containing a list of prediction arrays and a list of image dimensions (width, height) is returned.
If `return_image_dims` is True and a single image is provided, a tuple containing the prediction array and image dimensions (width, height) is returned.
If `return_image_dims` is False and a list of images is provided, only the list of prediction arrays is returned.
If `return_image_dims` is False and a single image is provided, only the prediction array is returned.
Notes:
- The input image(s) will be preprocessed (normalized and reshaped) before inference.
- This function uses an ONNX session to perform inference on the input image(s).
"""
return super().infer(
image,
disable_preproc_auto_orient=disable_preproc_auto_orient,
disable_preproc_contrast=disable_preproc_contrast,
disable_preproc_grayscale=disable_preproc_grayscale,
disable_preproc_static_crop=disable_preproc_static_crop,
return_image_dims=return_image_dims,
)
def postprocess(
self,
predictions: Tuple[np.ndarray],
preprocess_return_metadata: PreprocessReturnMetadata,
return_image_dims=False,
**kwargs,
) -> Union[ClassificationInferenceResponse, List[ClassificationInferenceResponse]]:
predictions = predictions[0]
return self.make_response(
predictions, preprocess_return_metadata["img_dims"], **kwargs
)
def predict(self, img_in: np.ndarray, **kwargs) -> Tuple[np.ndarray]:
predictions = self.onnx_session.run(None, {self.input_name: img_in})
return (predictions,)
def preprocess(
self, image: Any, **kwargs
) -> Tuple[np.ndarray, PreprocessReturnMetadata]:
if isinstance(image, list):
imgs_with_dims = [
self.preproc_image(
i,
disable_preproc_auto_orient=kwargs.get(
"disable_preproc_auto_orient", False
),
disable_preproc_contrast=kwargs.get(
"disable_preproc_contrast", False
),
disable_preproc_grayscale=kwargs.get(
"disable_preproc_grayscale", False
),
disable_preproc_static_crop=kwargs.get(
"disable_preproc_static_crop", False
),
)
for i in image
]
imgs, img_dims = zip(*imgs_with_dims)
img_in = np.concatenate(imgs, axis=0)
else:
img_in, img_dims = self.preproc_image(
image,
disable_preproc_auto_orient=kwargs.get(
"disable_preproc_auto_orient", False
),
disable_preproc_contrast=kwargs.get("disable_preproc_contrast", False),
disable_preproc_grayscale=kwargs.get(
"disable_preproc_grayscale", False
),
disable_preproc_static_crop=kwargs.get(
"disable_preproc_static_crop", False
),
)
img_dims = [img_dims]
img_in /= 255.0
mean = (0.5, 0.5, 0.5)
std = (0.5, 0.5, 0.5)
img_in = img_in.astype(np.float32)
img_in[:, 0, :, :] = (img_in[:, 0, :, :] - mean[0]) / std[0]
img_in[:, 1, :, :] = (img_in[:, 1, :, :] - mean[1]) / std[1]
img_in[:, 2, :, :] = (img_in[:, 2, :, :] - mean[2]) / std[2]
return img_in, PreprocessReturnMetadata({"img_dims": img_dims})
def infer_from_request(
self,
request: ClassificationInferenceRequest,
) -> Union[List[InferenceResponse], InferenceResponse]:
"""
Handle an inference request to produce an appropriate response.
Args:
request (ClassificationInferenceRequest): The request object encapsulating the image(s) and relevant parameters.
Returns:
Union[List[InferenceResponse], InferenceResponse]: The response object(s) containing the predictions, visualization, and other pertinent details. If a list of images was provided, a list of responses is returned. Otherwise, a single response is returned.
Notes:
- Starts a timer at the beginning to calculate inference time.
- Processes the image(s) through the `infer` method.
- Generates the appropriate response object(s) using `make_response`.
- Calculates and sets the time taken for inference.
- If visualization is requested, the predictions are drawn on the image.
"""
t1 = perf_counter()
responses = self.infer(**request.dict(), return_image_dims=True)
for response in responses:
response.time = perf_counter() - t1
if request.visualize_predictions:
for response in responses:
response.visualization = self.draw_predictions(request, response)
if not isinstance(request.image, list):
responses = responses[0]
return responses
def make_response(
self,
predictions,
img_dims,
confidence: float = 0.5,
**kwargs,
) -> Union[ClassificationInferenceResponse, List[ClassificationInferenceResponse]]:
"""
Create response objects for the given predictions and image dimensions.
Args:
predictions (list): List of prediction arrays from the inference process.
img_dims (list): List of tuples indicating the dimensions (width, height) of each image.
confidence (float, optional): Confidence threshold for filtering predictions. Defaults to 0.5.
**kwargs: Additional parameters to influence the response creation process.
Returns:
Union[ClassificationInferenceResponse, List[ClassificationInferenceResponse]]: A response object or a list of response objects encapsulating the prediction details.
Notes:
- If the model is multiclass, a `MultiLabelClassificationInferenceResponse` is generated for each image.
- If the model is not multiclass, a `ClassificationInferenceResponse` is generated for each image.
- Predictions below the confidence threshold are filtered out.
"""
responses = []
confidence_threshold = float(confidence)
for ind, prediction in enumerate(predictions):
if self.multiclass:
preds = prediction[0]
results = dict()
predicted_classes = []
for i, o in enumerate(preds):
cls_name = self.class_names[i]
score = float(o)
results[cls_name] = {"confidence": score, "class_id": i}
if score > confidence_threshold:
predicted_classes.append(cls_name)
response = MultiLabelClassificationInferenceResponse(
image=InferenceResponseImage(
width=img_dims[ind][0], height=img_dims[ind][1]
),
predicted_classes=predicted_classes,
predictions=results,
)
else:
preds = prediction[0]
preds = self.softmax(preds)
results = []
for i, cls_name in enumerate(self.class_names):
score = float(preds[i])
pred = {
"class_id": i,
"class": cls_name,
"confidence": round(score, 4),
}
results.append(pred)
results = sorted(results, key=lambda x: x["confidence"], reverse=True)
response = ClassificationInferenceResponse(
image=InferenceResponseImage(
width=img_dims[ind][1], height=img_dims[ind][0]
),
predictions=results,
top=results[0]["class"],
confidence=results[0]["confidence"],
)
responses.append(response)
return responses
@staticmethod
def softmax(x):
"""Compute softmax values for each set of scores in x.
Args:
x (np.array): The input array containing the scores.
Returns:
np.array: The softmax values for each set of scores.
"""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum()
def get_model_output_shape(self) -> Tuple[int, int, int]:
test_image = (np.random.rand(1024, 1024, 3) * 255).astype(np.uint8)
test_image, _ = self.preprocess(test_image)
output = np.array(self.predict(test_image))
return output.shape
def validate_model_classes(self) -> None:
output_shape = self.get_model_output_shape()
num_classes = output_shape[3]
try:
assert num_classes == self.num_classes
except AssertionError:
raise ValueError(
f"Number of classes in model ({num_classes}) does not match the number of classes in the environment ({self.num_classes})"
)
|