ccbo / app.py
FrankWanger's picture
fixed calc issue
ef03fc8
raw
history blame
11.7 kB
import numpy as np
import gradio as gr
import pickle
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
# Define styling for success/failure highlighting
def highlight_success(val):
color = 'lightgreen' if val == 'Success' else 'lightcoral'
return f'color:white;background-color: {color}'
# Simulation function for electrospraying
def sim_espray_constrained(x, noise_se=None):
# Ensure x is a numpy array with float data type
x = np.array(x, dtype=float)
# Ensure x is a 2D array
if x.ndim == 1:
x = x.reshape(1, -1)
# Define the equations
conc = x[:, 0]
flow_rate = x[:, 1]
voltage = x[:, 2]
solvent = x[:, 3]
diameter = (np.sqrt(conc) * np.sqrt(flow_rate)) / np.log2(voltage) * 10 + 0.4 + solvent # Diameter in micrometers
if noise_se is not None:
diameter = diameter + noise_se * np.random.randn(*diameter.shape)
exp_con = (np.log(flow_rate) * (solvent - 0.5) + 1.40 >= 0).astype(float)
return np.column_stack((diameter, exp_con))
# Initialize experiment data
X_init = np.array([[0.5, 15, 10, 0],
[0.5, 0.1, 10, 1],
[3, 20, 15, 0],
[1, 20, 10, 1],
[0.2, 0.02, 10, 1]])
Y_init = sim_espray_constrained(X_init)
exp_record_df = pd.DataFrame(X_init, columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent'])
exp_record_df['Size (um)'] = Y_init[:, 0]
exp_record_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in exp_record_df['Solvent']]
exp_record_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in Y_init[:, 1]]
prior_experiments_display = exp_record_df.style.map(highlight_success, subset=['Feasible?']).format(precision=3)
# Functions for data processing and visualization
def import_results():
strategies = ['qEI', 'qEI_vi_mixed_con', 'qEICF_vi_mixed_con', 'rnd']
# Load results from pickle file
with open('best_distances.pkl', 'rb') as f:
best_distances = pickle.load(f)
# vstack all values in best_distances
best_distances_vstack = {k: np.vstack(best_distances[k]) for k in strategies}
best_distances_all_trials = -np.vstack([best_distances_vstack[k] for k in strategies])
best_distances_all_trials_df = pd.DataFrame(best_distances_all_trials)
best_distances_all_trials_df['strategy'] = np.repeat(['Vanilla BO', 'Constrained BO', 'CCBO', 'Random'], 20)
best_distances_all_trials_df['trial'] = list(range(20)) * len(strategies)
best_distances_df_long = pd.melt(best_distances_all_trials_df, id_vars=['strategy', 'trial'], var_name='iteration', value_name='regret')
return best_distances_df_long
def calc_human_performance(df):
# Make a copy of the dataframe to avoid modifying the original
df_copy = df.copy()
# convert back solvent to 0 and 1
df_copy['Solvent'] = [0 if x == 'DMAc' else 1 for x in df_copy['Solvent']]
TARGET_SIZE = 3.0 # Example target size
ROUNDS = len(df_copy) // 2
# Ensure all values are numeric
numeric_cols = ['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent']
for col in numeric_cols:
df_copy[col] = pd.to_numeric(df_copy[col])
X_human = df_copy[numeric_cols].values
X_human_init = X_init.copy()
Y_human_init = Y_init.copy()
best_human_distance = []
for iter in range(ROUNDS + 1):
Y_distance = -np.abs(Y_human_init[:, 0] - TARGET_SIZE)
best_human_distance.append(np.ma.masked_array(Y_distance, mask=~Y_human_init[:, 1].astype(bool)).max())
# Check if we have more data for this iteration
if 2 * iter < len(X_human):
# Get the slice of new experiments
new_x = X_human[2 * iter:min(2 * (iter + 1), len(X_human))]
# Add the new experiments to our dataset
X_human_init = np.vstack([X_human_init, new_x])
Y_human_init = np.vstack([Y_human_init, sim_espray_constrained(new_x)])
return -np.array(best_human_distance)
def plot_results(exp_data_df):
# Extract human performance
best_human_distance = calc_human_performance(exp_data_df)
# Import results
best_distances_df_long = import_results()
fig = go.Figure()
strategies = best_distances_df_long['strategy'].unique()
for strategy in strategies:
strategy_data = best_distances_df_long[best_distances_df_long['strategy'] == strategy]
# Calculate mean and standard deviation
mean_regret = strategy_data.groupby('iteration')['regret'].mean()
std_regret = strategy_data.groupby('iteration')['regret'].std()
iterations = mean_regret.index
color = px.colors.qualitative.Set2[strategies.tolist().index(strategy)]
# Add trace for mean line
mean_trace = go.Scatter(
x=iterations,
y=mean_regret,
mode='lines',
name=strategy,
line=dict(width=2, color=color)
)
fig.add_trace(mean_trace)
# Add trace for shaded area (standard deviation)
fig.add_trace(go.Scatter(
x=list(iterations) + list(iterations[::-1]),
y=list(mean_regret + std_regret) + list((mean_regret - std_regret)[::-1]),
fill='toself',
fillcolor=mean_trace.line.color.replace('rgb', 'rgba').replace(')', ',0.2)'),
line=dict(color='rgba(255,255,255,0)'),
showlegend=False,
name=f'{strategy} (std dev)'
))
# Add trace for human performance
fig.add_trace(go.Scatter(
x=list(range(len(best_human_distance))),
y=best_human_distance,
mode='lines+markers',
name='Human',
line=dict(width=2, color='brown')
))
fig.update_layout(
title='Performance Comparison',
xaxis_title='Iteration',
yaxis_title='Regret (μm)',
legend_title='Strategy',
template='plotly_white',
legend=dict(
x=0.01,
y=0.01,
bgcolor='rgba(255, 255, 255, 0.5)',
bordercolor='rgba(0, 0, 0, 0.5)',
borderwidth=1
)
)
return fig
# Prediction function - simplified signature by removing unnecessary text params
def predict(state, conc1, flow_rate1, voltage1, solvent1, conc2, flow_rate2, voltage2, solvent2):
# Get current results storage from state or initialize if None
if state is None:
results_storage = pd.DataFrame(columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])
else:
results_storage = state.copy()
solvent_value1 = 0 if solvent1 == 'DMAc' else 1
solvent_value2 = 0 if solvent2 == 'DMAc' else 1
# Process inputs and get predictions
inputs1 = np.array([[conc1, flow_rate1, voltage1, solvent_value1]])
inputs2 = np.array([[conc2, flow_rate2, voltage2, solvent_value2]])
results1 = sim_espray_constrained(inputs1)
results2 = sim_espray_constrained(inputs2)
# Format and store results
results_df = pd.DataFrame([
[conc1, flow_rate1, voltage1, solvent_value1, results1[0, 0], results1[0, 1]],
[conc2, flow_rate2, voltage2, solvent_value2, results2[0, 0], results2[0, 1]]
], columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])
results_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in results_df['Solvent']]
results_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in results_df['Feasible?']]
results_storage = pd.concat([results_storage, results_df], ignore_index=True)
results_display = results_storage.style.map(highlight_success, subset=['Feasible?']).format(precision=3)
# Return updated state and UI updates
return (
results_storage,
gr.DataFrame(value=prior_experiments_display, label="Prior Experiments"),
gr.DataFrame(value=results_display, label="Your Results"),
plot_results(results_storage)
)
# Reset results function
def reset_results(state):
results_storage = pd.DataFrame(columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])
return (
results_storage,
gr.DataFrame(value=prior_experiments_display, label="Prior Experiments"),
gr.DataFrame(value=results_storage.style.map(highlight_success, subset=['Feasible?']).format(precision=3), label="Your Results"),
plot_results(results_storage)
)
# Application description
description = "<h3>Welcome, challenger!</h3><p> If you think you may perform better than <strong>CCBO</strong>, try this interactive game to optimize electrospray! Rules are simple: <ul><li>Examine carefully the initial experiments you have on the right (or below if you're using your phone), remember, your target size is <u><i><strong>3.000 um</strong></i></u> ----></li><li>Select your parameters, you have <strong>2</strong> experiments (chances) in each round, use them wisely! </li><li>Click <strong>Submit</strong> to see the results, reflect and improve your selection!</li><li>Repeat the process for <strong>5</strong> rounds to see if you can beat CCBO!</li></ul></p><p>Your data will not be stored, so feel free to play again, good luck!</p>"
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Human vs CCBO Campaign - Optimize Electrospray")
gr.Markdown(description)
# Add state component to store user-specific results
results_state = gr.State()
with gr.Row():
# Input parameters column
with gr.Column():
gr.Markdown("### Experiment 1")
conc1 = gr.Slider(minimum=0.05, maximum=5.0, value=1.2, step=0.001, label="Concentration (%w/v)")
flow_rate1 = gr.Slider(minimum=0.01, maximum=60.0, value=20.0, step=0.001, label="Flow Rate (mL/h)")
voltage1 = gr.Slider(minimum=10.0, maximum=18.0, value=15.0, step=0.001, label="Voltage (kV)")
solvent1 = gr.Dropdown(['DMAc', 'CHCl3'], value='DMAc', label='Solvent')
gr.Markdown("### Experiment 2")
conc2 = gr.Slider(minimum=0.05, maximum=5.0, value=2.8, step=0.001, label="Concentration (%w/v)")
flow_rate2 = gr.Slider(minimum=0.01, maximum=60.0, value=20.0, step=0.001, label="Flow Rate (mL/h)")
voltage2 = gr.Slider(minimum=10.0, maximum=18.0, value=15.0, step=0.001, label="Voltage (kV)")
solvent2 = gr.Dropdown(['DMAc', 'CHCl3'], value='CHCl3', label='Solvent')
# Results display column
with gr.Column():
prior_experiments = gr.DataFrame(value=prior_experiments_display, label="Prior Experiments")
results_df = gr.DataFrame(label="Your Results")
perf_plot = gr.Plot(label="Performance Comparison")
# Action buttons
with gr.Row():
submit_btn = gr.Button("Submit")
reset_btn = gr.Button("Reset Results")
# Connect the submit button to the predict function
submit_btn.click(
fn=predict,
inputs=[
results_state,
conc1, flow_rate1, voltage1, solvent1,
conc2, flow_rate2, voltage2, solvent2
],
outputs=[results_state, prior_experiments, results_df, perf_plot]
)
# Connect the reset button to the reset_results function
reset_btn.click(
fn=reset_results,
inputs=[results_state],
outputs=[results_state, prior_experiments, results_df, perf_plot]
)
demo.launch()