Spaces:
Sleeping
Sleeping
import numpy as np | |
import gradio as gr | |
import pickle | |
import plotly.graph_objects as go | |
import plotly.express as px | |
import pandas as pd | |
# Define styling for success/failure highlighting | |
def highlight_success(val): | |
color = 'lightgreen' if val == 'Success' else 'lightcoral' | |
return f'color:white;background-color: {color}' | |
# Simulation function for electrospraying | |
def sim_espray_constrained(x, noise_se=None): | |
# Ensure x is a numpy array with float data type | |
x = np.array(x, dtype=float) | |
# Ensure x is a 2D array | |
if x.ndim == 1: | |
x = x.reshape(1, -1) | |
# Define the equations | |
conc = x[:, 0] | |
flow_rate = x[:, 1] | |
voltage = x[:, 2] | |
solvent = x[:, 3] | |
diameter = (np.sqrt(conc) * np.sqrt(flow_rate)) / np.log2(voltage) * 10 + 0.4 + solvent # Diameter in micrometers | |
if noise_se is not None: | |
diameter = diameter + noise_se * np.random.randn(*diameter.shape) | |
exp_con = (np.log(flow_rate) * (solvent - 0.5) + 1.40 >= 0).astype(float) | |
return np.column_stack((diameter, exp_con)) | |
# Initialize experiment data | |
X_init = np.array([[0.5, 15, 10, 0], | |
[0.5, 0.1, 10, 1], | |
[3, 20, 15, 0], | |
[1, 20, 10, 1], | |
[0.2, 0.02, 10, 1]]) | |
Y_init = sim_espray_constrained(X_init) | |
exp_record_df = pd.DataFrame(X_init, columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent']) | |
exp_record_df['Size (um)'] = Y_init[:, 0] | |
exp_record_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in exp_record_df['Solvent']] | |
exp_record_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in Y_init[:, 1]] | |
prior_experiments_display = exp_record_df.style.map(highlight_success, subset=['Feasible?']).format(precision=3) | |
# Functions for data processing and visualization | |
def import_results(): | |
strategies = ['qEI', 'qEI_vi_mixed_con', 'qEICF_vi_mixed_con', 'rnd'] | |
# Load results from pickle file | |
with open('best_distances.pkl', 'rb') as f: | |
best_distances = pickle.load(f) | |
# vstack all values in best_distances | |
best_distances_vstack = {k: np.vstack(best_distances[k]) for k in strategies} | |
best_distances_all_trials = -np.vstack([best_distances_vstack[k] for k in strategies]) | |
best_distances_all_trials_df = pd.DataFrame(best_distances_all_trials) | |
best_distances_all_trials_df['strategy'] = np.repeat(['Vanilla BO', 'Constrained BO', 'CCBO', 'Random'], 20) | |
best_distances_all_trials_df['trial'] = list(range(20)) * len(strategies) | |
best_distances_df_long = pd.melt(best_distances_all_trials_df, id_vars=['strategy', 'trial'], var_name='iteration', value_name='regret') | |
return best_distances_df_long | |
def calc_human_performance(df): | |
# Make a copy of the dataframe to avoid modifying the original | |
df_copy = df.copy() | |
# convert back solvent to 0 and 1 | |
df_copy['Solvent'] = [0 if x == 'DMAc' else 1 for x in df_copy['Solvent']] | |
TARGET_SIZE = 3.0 # Example target size | |
ROUNDS = len(df_copy) // 2 | |
# Ensure all values are numeric | |
numeric_cols = ['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent'] | |
for col in numeric_cols: | |
df_copy[col] = pd.to_numeric(df_copy[col]) | |
X_human = df_copy[numeric_cols].values | |
X_human_init = X_init.copy() | |
Y_human_init = Y_init.copy() | |
best_human_distance = [] | |
for iter in range(ROUNDS + 1): | |
Y_distance = -np.abs(Y_human_init[:, 0] - TARGET_SIZE) | |
best_human_distance.append(np.ma.masked_array(Y_distance, mask=~Y_human_init[:, 1].astype(bool)).max()) | |
# Check if we have more data for this iteration | |
if 2 * iter < len(X_human): | |
# Get the slice of new experiments | |
new_x = X_human[2 * iter:min(2 * (iter + 1), len(X_human))] | |
# Add the new experiments to our dataset | |
X_human_init = np.vstack([X_human_init, new_x]) | |
Y_human_init = np.vstack([Y_human_init, sim_espray_constrained(new_x)]) | |
return -np.array(best_human_distance) | |
def plot_results(exp_data_df): | |
# Extract human performance | |
best_human_distance = calc_human_performance(exp_data_df) | |
# Import results | |
best_distances_df_long = import_results() | |
fig = go.Figure() | |
strategies = best_distances_df_long['strategy'].unique() | |
for strategy in strategies: | |
strategy_data = best_distances_df_long[best_distances_df_long['strategy'] == strategy] | |
# Calculate mean and standard deviation | |
mean_regret = strategy_data.groupby('iteration')['regret'].mean() | |
std_regret = strategy_data.groupby('iteration')['regret'].std() | |
iterations = mean_regret.index | |
color = px.colors.qualitative.Set2[strategies.tolist().index(strategy)] | |
# Add trace for mean line | |
mean_trace = go.Scatter( | |
x=iterations, | |
y=mean_regret, | |
mode='lines', | |
name=strategy, | |
line=dict(width=2, color=color) | |
) | |
fig.add_trace(mean_trace) | |
# Add trace for shaded area (standard deviation) | |
fig.add_trace(go.Scatter( | |
x=list(iterations) + list(iterations[::-1]), | |
y=list(mean_regret + std_regret) + list((mean_regret - std_regret)[::-1]), | |
fill='toself', | |
fillcolor=mean_trace.line.color.replace('rgb', 'rgba').replace(')', ',0.2)'), | |
line=dict(color='rgba(255,255,255,0)'), | |
showlegend=False, | |
name=f'{strategy} (std dev)' | |
)) | |
# Add trace for human performance | |
fig.add_trace(go.Scatter( | |
x=list(range(len(best_human_distance))), | |
y=best_human_distance, | |
mode='lines+markers', | |
name='Human', | |
line=dict(width=2, color='brown') | |
)) | |
fig.update_layout( | |
title='Performance Comparison', | |
xaxis_title='Iteration', | |
yaxis_title='Regret (μm)', | |
legend_title='Strategy', | |
template='plotly_white', | |
legend=dict( | |
x=0.01, | |
y=0.01, | |
bgcolor='rgba(255, 255, 255, 0.5)', | |
bordercolor='rgba(0, 0, 0, 0.5)', | |
borderwidth=1 | |
) | |
) | |
return fig | |
# Prediction function - simplified signature by removing unnecessary text params | |
def predict(state, conc1, flow_rate1, voltage1, solvent1, conc2, flow_rate2, voltage2, solvent2): | |
# Get current results storage from state or initialize if None | |
if state is None: | |
results_storage = pd.DataFrame(columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?']) | |
else: | |
results_storage = state.copy() | |
solvent_value1 = 0 if solvent1 == 'DMAc' else 1 | |
solvent_value2 = 0 if solvent2 == 'DMAc' else 1 | |
# Process inputs and get predictions | |
inputs1 = np.array([[conc1, flow_rate1, voltage1, solvent_value1]]) | |
inputs2 = np.array([[conc2, flow_rate2, voltage2, solvent_value2]]) | |
results1 = sim_espray_constrained(inputs1) | |
results2 = sim_espray_constrained(inputs2) | |
# Format and store results | |
results_df = pd.DataFrame([ | |
[conc1, flow_rate1, voltage1, solvent_value1, results1[0, 0], results1[0, 1]], | |
[conc2, flow_rate2, voltage2, solvent_value2, results2[0, 0], results2[0, 1]] | |
], columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?']) | |
results_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in results_df['Solvent']] | |
results_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in results_df['Feasible?']] | |
results_storage = pd.concat([results_storage, results_df], ignore_index=True) | |
results_display = results_storage.style.map(highlight_success, subset=['Feasible?']).format(precision=3) | |
# Return updated state and UI updates | |
return ( | |
results_storage, | |
gr.DataFrame(value=prior_experiments_display, label="Prior Experiments"), | |
gr.DataFrame(value=results_display, label="Your Results"), | |
plot_results(results_storage) | |
) | |
# Reset results function | |
def reset_results(state): | |
results_storage = pd.DataFrame(columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?']) | |
return ( | |
results_storage, | |
gr.DataFrame(value=prior_experiments_display, label="Prior Experiments"), | |
gr.DataFrame(value=results_storage.style.map(highlight_success, subset=['Feasible?']).format(precision=3), label="Your Results"), | |
plot_results(results_storage) | |
) | |
# Application description | |
description = "<h3>Welcome, challenger!</h3><p> If you think you may perform better than <strong>CCBO</strong>, try this interactive game to optimize electrospray! Rules are simple: <ul><li>Examine carefully the initial experiments you have on the right (or below if you're using your phone), remember, your target size is <u><i><strong>3.000 um</strong></i></u> ----></li><li>Select your parameters, you have <strong>2</strong> experiments (chances) in each round, use them wisely! </li><li>Click <strong>Submit</strong> to see the results, reflect and improve your selection!</li><li>Repeat the process for <strong>5</strong> rounds to see if you can beat CCBO!</li></ul></p><p>Your data will not be stored, so feel free to play again, good luck!</p>" | |
# Create Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("## Human vs CCBO Campaign - Optimize Electrospray") | |
gr.Markdown(description) | |
# Add state component to store user-specific results | |
results_state = gr.State() | |
with gr.Row(): | |
# Input parameters column | |
with gr.Column(): | |
gr.Markdown("### Experiment 1") | |
conc1 = gr.Slider(minimum=0.05, maximum=5.0, value=1.2, step=0.001, label="Concentration (%w/v)") | |
flow_rate1 = gr.Slider(minimum=0.01, maximum=60.0, value=20.0, step=0.001, label="Flow Rate (mL/h)") | |
voltage1 = gr.Slider(minimum=10.0, maximum=18.0, value=15.0, step=0.001, label="Voltage (kV)") | |
solvent1 = gr.Dropdown(['DMAc', 'CHCl3'], value='DMAc', label='Solvent') | |
gr.Markdown("### Experiment 2") | |
conc2 = gr.Slider(minimum=0.05, maximum=5.0, value=2.8, step=0.001, label="Concentration (%w/v)") | |
flow_rate2 = gr.Slider(minimum=0.01, maximum=60.0, value=20.0, step=0.001, label="Flow Rate (mL/h)") | |
voltage2 = gr.Slider(minimum=10.0, maximum=18.0, value=15.0, step=0.001, label="Voltage (kV)") | |
solvent2 = gr.Dropdown(['DMAc', 'CHCl3'], value='CHCl3', label='Solvent') | |
# Results display column | |
with gr.Column(): | |
prior_experiments = gr.DataFrame(value=prior_experiments_display, label="Prior Experiments") | |
results_df = gr.DataFrame(label="Your Results") | |
perf_plot = gr.Plot(label="Performance Comparison") | |
# Action buttons | |
with gr.Row(): | |
submit_btn = gr.Button("Submit") | |
reset_btn = gr.Button("Reset Results") | |
# Connect the submit button to the predict function | |
submit_btn.click( | |
fn=predict, | |
inputs=[ | |
results_state, | |
conc1, flow_rate1, voltage1, solvent1, | |
conc2, flow_rate2, voltage2, solvent2 | |
], | |
outputs=[results_state, prior_experiments, results_df, perf_plot] | |
) | |
# Connect the reset button to the reset_results function | |
reset_btn.click( | |
fn=reset_results, | |
inputs=[results_state], | |
outputs=[results_state, prior_experiments, results_df, perf_plot] | |
) | |
demo.launch() |