File size: 11,683 Bytes
509b18a
 
 
 
 
 
 
ef03fc8
509b18a
 
 
 
ef03fc8
509b18a
ef03fc8
 
 
 
 
 
 
509b18a
 
 
 
 
 
 
 
 
 
 
ef03fc8
509b18a
 
 
 
 
 
 
 
 
 
 
ef03fc8
509b18a
ef03fc8
509b18a
 
 
 
6ca9eed
509b18a
 
 
 
 
 
 
 
 
 
 
 
 
ef03fc8
 
 
509b18a
ef03fc8
509b18a
 
ef03fc8
509b18a
ef03fc8
 
 
 
 
 
509b18a
 
 
 
 
 
 
 
 
ef03fc8
 
 
 
 
 
 
 
 
509b18a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef03fc8
 
f3034bd
 
 
 
 
 
509b18a
 
 
ef03fc8
509b18a
 
 
 
 
ef03fc8
 
 
 
 
509b18a
 
 
 
 
 
 
ef03fc8
 
 
 
 
 
 
509b18a
ef03fc8
f3034bd
51b03b4
ef03fc8
 
 
 
 
 
509b18a
ef03fc8
 
509b18a
ef03fc8
51b03b4
ef03fc8
51b03b4
f3034bd
 
 
 
51b03b4
ef03fc8
51b03b4
 
ef03fc8
 
 
51b03b4
 
 
ef03fc8
 
 
51b03b4
ef03fc8
 
51b03b4
ef03fc8
51b03b4
 
 
ef03fc8
51b03b4
 
 
 
 
 
 
 
ef03fc8
 
 
51b03b4
f3034bd
51b03b4
 
 
 
 
f3034bd
 
51b03b4
 
509b18a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import numpy as np
import gradio as gr
import pickle
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd

# Define styling for success/failure highlighting
def highlight_success(val):
    color = 'lightgreen' if val == 'Success' else 'lightcoral'
    return f'color:white;background-color: {color}'

# Simulation function for electrospraying
def sim_espray_constrained(x, noise_se=None):
    # Ensure x is a numpy array with float data type
    x = np.array(x, dtype=float)
    
    # Ensure x is a 2D array
    if x.ndim == 1:
        x = x.reshape(1, -1)
        
    # Define the equations
    conc = x[:, 0]
    flow_rate = x[:, 1]
    voltage = x[:, 2]
    solvent = x[:, 3]
    diameter = (np.sqrt(conc) * np.sqrt(flow_rate)) / np.log2(voltage) * 10 + 0.4 + solvent  # Diameter in micrometers
    if noise_se is not None:
        diameter = diameter + noise_se * np.random.randn(*diameter.shape)
    exp_con = (np.log(flow_rate) * (solvent - 0.5) + 1.40 >= 0).astype(float)
    return np.column_stack((diameter, exp_con))

# Initialize experiment data
X_init = np.array([[0.5, 15, 10, 0],
                   [0.5, 0.1, 10, 1],
                   [3, 20, 15, 0],
                   [1, 20, 10, 1],
                   [0.2, 0.02, 10, 1]])

Y_init = sim_espray_constrained(X_init)
exp_record_df = pd.DataFrame(X_init, columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent'])
exp_record_df['Size (um)'] = Y_init[:, 0]
exp_record_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in exp_record_df['Solvent']]
exp_record_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in Y_init[:, 1]]
prior_experiments_display = exp_record_df.style.map(highlight_success, subset=['Feasible?']).format(precision=3)

# Functions for data processing and visualization
def import_results():
    strategies = ['qEI', 'qEI_vi_mixed_con', 'qEICF_vi_mixed_con', 'rnd']
    
    # Load results from pickle file
    with open('best_distances.pkl', 'rb') as f:
        best_distances = pickle.load(f)

    # vstack all values in best_distances
    best_distances_vstack = {k: np.vstack(best_distances[k]) for k in strategies}
    best_distances_all_trials = -np.vstack([best_distances_vstack[k] for k in strategies])
    best_distances_all_trials_df = pd.DataFrame(best_distances_all_trials)
    best_distances_all_trials_df['strategy'] = np.repeat(['Vanilla BO', 'Constrained BO', 'CCBO', 'Random'], 20)
    best_distances_all_trials_df['trial'] = list(range(20)) * len(strategies)

    best_distances_df_long = pd.melt(best_distances_all_trials_df, id_vars=['strategy', 'trial'], var_name='iteration', value_name='regret')
    return best_distances_df_long

def calc_human_performance(df):
    # Make a copy of the dataframe to avoid modifying the original
    df_copy = df.copy()
    
    # convert back solvent to 0 and 1
    df_copy['Solvent'] = [0 if x == 'DMAc' else 1 for x in df_copy['Solvent']]
    
    TARGET_SIZE = 3.0  # Example target size
    ROUNDS = len(df_copy) // 2

    # Ensure all values are numeric
    numeric_cols = ['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent']
    for col in numeric_cols:
        df_copy[col] = pd.to_numeric(df_copy[col])
    
    X_human = df_copy[numeric_cols].values

    X_human_init = X_init.copy()
    Y_human_init = Y_init.copy()
    
    best_human_distance = []

    for iter in range(ROUNDS + 1):
        Y_distance = -np.abs(Y_human_init[:, 0] - TARGET_SIZE)
        best_human_distance.append(np.ma.masked_array(Y_distance, mask=~Y_human_init[:, 1].astype(bool)).max())
        
        # Check if we have more data for this iteration
        if 2 * iter < len(X_human):
            # Get the slice of new experiments
            new_x = X_human[2 * iter:min(2 * (iter + 1), len(X_human))]
            
            # Add the new experiments to our dataset
            X_human_init = np.vstack([X_human_init, new_x])
            Y_human_init = np.vstack([Y_human_init, sim_espray_constrained(new_x)])

    return -np.array(best_human_distance)

def plot_results(exp_data_df):
    # Extract human performance
    best_human_distance = calc_human_performance(exp_data_df)
    
    # Import results
    best_distances_df_long = import_results()
    
    fig = go.Figure()
    
    strategies = best_distances_df_long['strategy'].unique()
    
    for strategy in strategies:
        strategy_data = best_distances_df_long[best_distances_df_long['strategy'] == strategy]
        
        # Calculate mean and standard deviation
        mean_regret = strategy_data.groupby('iteration')['regret'].mean()
        std_regret = strategy_data.groupby('iteration')['regret'].std()
        
        iterations = mean_regret.index
        color = px.colors.qualitative.Set2[strategies.tolist().index(strategy)]
        
        # Add trace for mean line
        mean_trace = go.Scatter(
            x=iterations,
            y=mean_regret,
            mode='lines',
            name=strategy,
            line=dict(width=2, color=color)
        )
        fig.add_trace(mean_trace)
        
        # Add trace for shaded area (standard deviation)
        fig.add_trace(go.Scatter(
            x=list(iterations) + list(iterations[::-1]),
            y=list(mean_regret + std_regret) + list((mean_regret - std_regret)[::-1]),
            fill='toself',
            fillcolor=mean_trace.line.color.replace('rgb', 'rgba').replace(')', ',0.2)'),
            line=dict(color='rgba(255,255,255,0)'),
            showlegend=False,
            name=f'{strategy} (std dev)'
        ))
    # Add trace for human performance
    fig.add_trace(go.Scatter(
        x=list(range(len(best_human_distance))),
        y=best_human_distance,
        mode='lines+markers',
        name='Human',
        line=dict(width=2, color='brown')
    ))

    fig.update_layout(
        title='Performance Comparison',
        xaxis_title='Iteration',
        yaxis_title='Regret (μm)',
        legend_title='Strategy',
        template='plotly_white',
        legend=dict(
            x=0.01,
            y=0.01,
            bgcolor='rgba(255, 255, 255, 0.5)',
            bordercolor='rgba(0, 0, 0, 0.5)',
            borderwidth=1
        )
    )
    
    return fig

# Prediction function - simplified signature by removing unnecessary text params
def predict(state, conc1, flow_rate1, voltage1, solvent1, conc2, flow_rate2, voltage2, solvent2):
    # Get current results storage from state or initialize if None
    if state is None:
        results_storage = pd.DataFrame(columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])
    else:
        results_storage = state.copy()
        
    solvent_value1 = 0 if solvent1 == 'DMAc' else 1
    solvent_value2 = 0 if solvent2 == 'DMAc' else 1
    
    # Process inputs and get predictions
    inputs1 = np.array([[conc1, flow_rate1, voltage1, solvent_value1]])
    inputs2 = np.array([[conc2, flow_rate2, voltage2, solvent_value2]])
    results1 = sim_espray_constrained(inputs1)
    results2 = sim_espray_constrained(inputs2)
    
    # Format and store results
    results_df = pd.DataFrame([
        [conc1, flow_rate1, voltage1, solvent_value1, results1[0, 0], results1[0, 1]],
        [conc2, flow_rate2, voltage2, solvent_value2, results2[0, 0], results2[0, 1]]
    ], columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])

    results_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in results_df['Solvent']]
    results_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in results_df['Feasible?']]
    
    results_storage = pd.concat([results_storage, results_df], ignore_index=True)
    results_display = results_storage.style.map(highlight_success, subset=['Feasible?']).format(precision=3)
   
    # Return updated state and UI updates
    return (
        results_storage, 
        gr.DataFrame(value=prior_experiments_display, label="Prior Experiments"),
        gr.DataFrame(value=results_display, label="Your Results"), 
        plot_results(results_storage)
    )

# Reset results function
def reset_results(state):
    results_storage = pd.DataFrame(columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])
    return (
        results_storage, 
        gr.DataFrame(value=prior_experiments_display, label="Prior Experiments"),
        gr.DataFrame(value=results_storage.style.map(highlight_success, subset=['Feasible?']).format(precision=3), label="Your Results"), 
        plot_results(results_storage)
    )

# Application description
description = "<h3>Welcome, challenger!</h3><p> If you think you may perform better than <strong>CCBO</strong>, try this interactive game to optimize electrospray! Rules are simple: <ul><li>Examine carefully the initial experiments you have on the right (or below if you're using your phone), remember, your target size is <u><i><strong>3.000 um</strong></i></u> ----></li><li>Select your parameters, you have <strong>2</strong> experiments (chances) in each round, use them wisely! </li><li>Click <strong>Submit</strong> to see the results, reflect and improve your selection!</li><li>Repeat the process for <strong>5</strong> rounds to see if you can beat CCBO!</li></ul></p><p>Your data will not be stored, so feel free to play again, good luck!</p>"

# Create Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("## Human vs CCBO Campaign - Optimize Electrospray")
    gr.Markdown(description)
    
    # Add state component to store user-specific results
    results_state = gr.State()
    
    with gr.Row():
        # Input parameters column
        with gr.Column():
            gr.Markdown("### Experiment 1")
            conc1 = gr.Slider(minimum=0.05, maximum=5.0, value=1.2, step=0.001, label="Concentration (%w/v)")
            flow_rate1 = gr.Slider(minimum=0.01, maximum=60.0, value=20.0, step=0.001, label="Flow Rate (mL/h)")
            voltage1 = gr.Slider(minimum=10.0, maximum=18.0, value=15.0, step=0.001, label="Voltage (kV)")
            solvent1 = gr.Dropdown(['DMAc', 'CHCl3'], value='DMAc', label='Solvent')
            
            gr.Markdown("### Experiment 2")
            conc2 = gr.Slider(minimum=0.05, maximum=5.0, value=2.8, step=0.001, label="Concentration (%w/v)")
            flow_rate2 = gr.Slider(minimum=0.01, maximum=60.0, value=20.0, step=0.001, label="Flow Rate (mL/h)")
            voltage2 = gr.Slider(minimum=10.0, maximum=18.0, value=15.0, step=0.001, label="Voltage (kV)")
            solvent2 = gr.Dropdown(['DMAc', 'CHCl3'], value='CHCl3', label='Solvent')
        
        # Results display column
        with gr.Column():
            prior_experiments = gr.DataFrame(value=prior_experiments_display, label="Prior Experiments")
            results_df = gr.DataFrame(label="Your Results")
            perf_plot = gr.Plot(label="Performance Comparison")
    
    # Action buttons
    with gr.Row():
        submit_btn = gr.Button("Submit")
        reset_btn = gr.Button("Reset Results")
    
    # Connect the submit button to the predict function
    submit_btn.click(
        fn=predict,
        inputs=[
            results_state, 
            conc1, flow_rate1, voltage1, solvent1,
            conc2, flow_rate2, voltage2, solvent2
        ],
        outputs=[results_state, prior_experiments, results_df, perf_plot]
    )
    
    # Connect the reset button to the reset_results function
    reset_btn.click(
        fn=reset_results,
        inputs=[results_state],
        outputs=[results_state, prior_experiments, results_df, perf_plot]
    )

demo.launch()