Spaces:
Sleeping
Sleeping
File size: 11,683 Bytes
509b18a ef03fc8 509b18a ef03fc8 509b18a ef03fc8 509b18a ef03fc8 509b18a ef03fc8 509b18a ef03fc8 509b18a 6ca9eed 509b18a ef03fc8 509b18a ef03fc8 509b18a ef03fc8 509b18a ef03fc8 509b18a ef03fc8 509b18a ef03fc8 f3034bd 509b18a ef03fc8 509b18a ef03fc8 509b18a ef03fc8 509b18a ef03fc8 f3034bd 51b03b4 ef03fc8 509b18a ef03fc8 509b18a ef03fc8 51b03b4 ef03fc8 51b03b4 f3034bd 51b03b4 ef03fc8 51b03b4 ef03fc8 51b03b4 ef03fc8 51b03b4 ef03fc8 51b03b4 ef03fc8 51b03b4 ef03fc8 51b03b4 ef03fc8 51b03b4 f3034bd 51b03b4 f3034bd 51b03b4 509b18a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import numpy as np
import gradio as gr
import pickle
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
# Define styling for success/failure highlighting
def highlight_success(val):
color = 'lightgreen' if val == 'Success' else 'lightcoral'
return f'color:white;background-color: {color}'
# Simulation function for electrospraying
def sim_espray_constrained(x, noise_se=None):
# Ensure x is a numpy array with float data type
x = np.array(x, dtype=float)
# Ensure x is a 2D array
if x.ndim == 1:
x = x.reshape(1, -1)
# Define the equations
conc = x[:, 0]
flow_rate = x[:, 1]
voltage = x[:, 2]
solvent = x[:, 3]
diameter = (np.sqrt(conc) * np.sqrt(flow_rate)) / np.log2(voltage) * 10 + 0.4 + solvent # Diameter in micrometers
if noise_se is not None:
diameter = diameter + noise_se * np.random.randn(*diameter.shape)
exp_con = (np.log(flow_rate) * (solvent - 0.5) + 1.40 >= 0).astype(float)
return np.column_stack((diameter, exp_con))
# Initialize experiment data
X_init = np.array([[0.5, 15, 10, 0],
[0.5, 0.1, 10, 1],
[3, 20, 15, 0],
[1, 20, 10, 1],
[0.2, 0.02, 10, 1]])
Y_init = sim_espray_constrained(X_init)
exp_record_df = pd.DataFrame(X_init, columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent'])
exp_record_df['Size (um)'] = Y_init[:, 0]
exp_record_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in exp_record_df['Solvent']]
exp_record_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in Y_init[:, 1]]
prior_experiments_display = exp_record_df.style.map(highlight_success, subset=['Feasible?']).format(precision=3)
# Functions for data processing and visualization
def import_results():
strategies = ['qEI', 'qEI_vi_mixed_con', 'qEICF_vi_mixed_con', 'rnd']
# Load results from pickle file
with open('best_distances.pkl', 'rb') as f:
best_distances = pickle.load(f)
# vstack all values in best_distances
best_distances_vstack = {k: np.vstack(best_distances[k]) for k in strategies}
best_distances_all_trials = -np.vstack([best_distances_vstack[k] for k in strategies])
best_distances_all_trials_df = pd.DataFrame(best_distances_all_trials)
best_distances_all_trials_df['strategy'] = np.repeat(['Vanilla BO', 'Constrained BO', 'CCBO', 'Random'], 20)
best_distances_all_trials_df['trial'] = list(range(20)) * len(strategies)
best_distances_df_long = pd.melt(best_distances_all_trials_df, id_vars=['strategy', 'trial'], var_name='iteration', value_name='regret')
return best_distances_df_long
def calc_human_performance(df):
# Make a copy of the dataframe to avoid modifying the original
df_copy = df.copy()
# convert back solvent to 0 and 1
df_copy['Solvent'] = [0 if x == 'DMAc' else 1 for x in df_copy['Solvent']]
TARGET_SIZE = 3.0 # Example target size
ROUNDS = len(df_copy) // 2
# Ensure all values are numeric
numeric_cols = ['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent']
for col in numeric_cols:
df_copy[col] = pd.to_numeric(df_copy[col])
X_human = df_copy[numeric_cols].values
X_human_init = X_init.copy()
Y_human_init = Y_init.copy()
best_human_distance = []
for iter in range(ROUNDS + 1):
Y_distance = -np.abs(Y_human_init[:, 0] - TARGET_SIZE)
best_human_distance.append(np.ma.masked_array(Y_distance, mask=~Y_human_init[:, 1].astype(bool)).max())
# Check if we have more data for this iteration
if 2 * iter < len(X_human):
# Get the slice of new experiments
new_x = X_human[2 * iter:min(2 * (iter + 1), len(X_human))]
# Add the new experiments to our dataset
X_human_init = np.vstack([X_human_init, new_x])
Y_human_init = np.vstack([Y_human_init, sim_espray_constrained(new_x)])
return -np.array(best_human_distance)
def plot_results(exp_data_df):
# Extract human performance
best_human_distance = calc_human_performance(exp_data_df)
# Import results
best_distances_df_long = import_results()
fig = go.Figure()
strategies = best_distances_df_long['strategy'].unique()
for strategy in strategies:
strategy_data = best_distances_df_long[best_distances_df_long['strategy'] == strategy]
# Calculate mean and standard deviation
mean_regret = strategy_data.groupby('iteration')['regret'].mean()
std_regret = strategy_data.groupby('iteration')['regret'].std()
iterations = mean_regret.index
color = px.colors.qualitative.Set2[strategies.tolist().index(strategy)]
# Add trace for mean line
mean_trace = go.Scatter(
x=iterations,
y=mean_regret,
mode='lines',
name=strategy,
line=dict(width=2, color=color)
)
fig.add_trace(mean_trace)
# Add trace for shaded area (standard deviation)
fig.add_trace(go.Scatter(
x=list(iterations) + list(iterations[::-1]),
y=list(mean_regret + std_regret) + list((mean_regret - std_regret)[::-1]),
fill='toself',
fillcolor=mean_trace.line.color.replace('rgb', 'rgba').replace(')', ',0.2)'),
line=dict(color='rgba(255,255,255,0)'),
showlegend=False,
name=f'{strategy} (std dev)'
))
# Add trace for human performance
fig.add_trace(go.Scatter(
x=list(range(len(best_human_distance))),
y=best_human_distance,
mode='lines+markers',
name='Human',
line=dict(width=2, color='brown')
))
fig.update_layout(
title='Performance Comparison',
xaxis_title='Iteration',
yaxis_title='Regret (μm)',
legend_title='Strategy',
template='plotly_white',
legend=dict(
x=0.01,
y=0.01,
bgcolor='rgba(255, 255, 255, 0.5)',
bordercolor='rgba(0, 0, 0, 0.5)',
borderwidth=1
)
)
return fig
# Prediction function - simplified signature by removing unnecessary text params
def predict(state, conc1, flow_rate1, voltage1, solvent1, conc2, flow_rate2, voltage2, solvent2):
# Get current results storage from state or initialize if None
if state is None:
results_storage = pd.DataFrame(columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])
else:
results_storage = state.copy()
solvent_value1 = 0 if solvent1 == 'DMAc' else 1
solvent_value2 = 0 if solvent2 == 'DMAc' else 1
# Process inputs and get predictions
inputs1 = np.array([[conc1, flow_rate1, voltage1, solvent_value1]])
inputs2 = np.array([[conc2, flow_rate2, voltage2, solvent_value2]])
results1 = sim_espray_constrained(inputs1)
results2 = sim_espray_constrained(inputs2)
# Format and store results
results_df = pd.DataFrame([
[conc1, flow_rate1, voltage1, solvent_value1, results1[0, 0], results1[0, 1]],
[conc2, flow_rate2, voltage2, solvent_value2, results2[0, 0], results2[0, 1]]
], columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])
results_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in results_df['Solvent']]
results_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in results_df['Feasible?']]
results_storage = pd.concat([results_storage, results_df], ignore_index=True)
results_display = results_storage.style.map(highlight_success, subset=['Feasible?']).format(precision=3)
# Return updated state and UI updates
return (
results_storage,
gr.DataFrame(value=prior_experiments_display, label="Prior Experiments"),
gr.DataFrame(value=results_display, label="Your Results"),
plot_results(results_storage)
)
# Reset results function
def reset_results(state):
results_storage = pd.DataFrame(columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])
return (
results_storage,
gr.DataFrame(value=prior_experiments_display, label="Prior Experiments"),
gr.DataFrame(value=results_storage.style.map(highlight_success, subset=['Feasible?']).format(precision=3), label="Your Results"),
plot_results(results_storage)
)
# Application description
description = "<h3>Welcome, challenger!</h3><p> If you think you may perform better than <strong>CCBO</strong>, try this interactive game to optimize electrospray! Rules are simple: <ul><li>Examine carefully the initial experiments you have on the right (or below if you're using your phone), remember, your target size is <u><i><strong>3.000 um</strong></i></u> ----></li><li>Select your parameters, you have <strong>2</strong> experiments (chances) in each round, use them wisely! </li><li>Click <strong>Submit</strong> to see the results, reflect and improve your selection!</li><li>Repeat the process for <strong>5</strong> rounds to see if you can beat CCBO!</li></ul></p><p>Your data will not be stored, so feel free to play again, good luck!</p>"
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Human vs CCBO Campaign - Optimize Electrospray")
gr.Markdown(description)
# Add state component to store user-specific results
results_state = gr.State()
with gr.Row():
# Input parameters column
with gr.Column():
gr.Markdown("### Experiment 1")
conc1 = gr.Slider(minimum=0.05, maximum=5.0, value=1.2, step=0.001, label="Concentration (%w/v)")
flow_rate1 = gr.Slider(minimum=0.01, maximum=60.0, value=20.0, step=0.001, label="Flow Rate (mL/h)")
voltage1 = gr.Slider(minimum=10.0, maximum=18.0, value=15.0, step=0.001, label="Voltage (kV)")
solvent1 = gr.Dropdown(['DMAc', 'CHCl3'], value='DMAc', label='Solvent')
gr.Markdown("### Experiment 2")
conc2 = gr.Slider(minimum=0.05, maximum=5.0, value=2.8, step=0.001, label="Concentration (%w/v)")
flow_rate2 = gr.Slider(minimum=0.01, maximum=60.0, value=20.0, step=0.001, label="Flow Rate (mL/h)")
voltage2 = gr.Slider(minimum=10.0, maximum=18.0, value=15.0, step=0.001, label="Voltage (kV)")
solvent2 = gr.Dropdown(['DMAc', 'CHCl3'], value='CHCl3', label='Solvent')
# Results display column
with gr.Column():
prior_experiments = gr.DataFrame(value=prior_experiments_display, label="Prior Experiments")
results_df = gr.DataFrame(label="Your Results")
perf_plot = gr.Plot(label="Performance Comparison")
# Action buttons
with gr.Row():
submit_btn = gr.Button("Submit")
reset_btn = gr.Button("Reset Results")
# Connect the submit button to the predict function
submit_btn.click(
fn=predict,
inputs=[
results_state,
conc1, flow_rate1, voltage1, solvent1,
conc2, flow_rate2, voltage2, solvent2
],
outputs=[results_state, prior_experiments, results_df, perf_plot]
)
# Connect the reset button to the reset_results function
reset_btn.click(
fn=reset_results,
inputs=[results_state],
outputs=[results_state, prior_experiments, results_df, perf_plot]
)
demo.launch() |