|
# ControlNet training example |
|
|
|
[Adding Conditional Control to Text-to-Image Diffusion Models](https://arxiv.org/abs/2302.05543) by Lvmin Zhang and Maneesh Agrawala. |
|
|
|
This example is based on the [training example in the original ControlNet repository](https://github.com/lllyasviel/ControlNet/blob/main/docs/train.md). It trains a ControlNet to fill circles using a [small synthetic dataset](https://huggingface.co/datasets/fusing/fill50k). |
|
|
|
## Installing the dependencies |
|
|
|
Before running the scripts, make sure to install the library's training dependencies: |
|
|
|
**Important** |
|
|
|
To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: |
|
```bash |
|
git clone https://github.com/huggingface/diffusers |
|
cd diffusers |
|
pip install -e . |
|
``` |
|
|
|
Then cd in the example folder and run |
|
```bash |
|
pip install -r requirements.txt |
|
``` |
|
|
|
And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: |
|
|
|
```bash |
|
accelerate config |
|
``` |
|
|
|
Or for a default accelerate configuration without answering questions about your environment |
|
|
|
```bash |
|
accelerate config default |
|
``` |
|
|
|
Or if your environment doesn't support an interactive shell e.g. a notebook |
|
|
|
```python |
|
from accelerate.utils import write_basic_config |
|
write_basic_config() |
|
``` |
|
|
|
## Circle filling dataset |
|
|
|
The original dataset is hosted in the [ControlNet repo](https://huggingface.co/lllyasviel/ControlNet/blob/main/training/fill50k.zip). We re-uploaded it to be compatible with `datasets` [here](https://huggingface.co/datasets/fusing/fill50k). Note that `datasets` handles dataloading within the training script. |
|
|
|
Our training examples use [Stable Diffusion 1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5) as the original set of ControlNet models were trained from it. However, ControlNet can be trained to augment any Stable Diffusion compatible model (such as [CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4)) or [stabilityai/stable-diffusion-2-1](https://huggingface.co/stabilityai/stable-diffusion-2-1). |
|
|
|
## Training |
|
|
|
Our training examples use two test conditioning images. They can be downloaded by running |
|
|
|
```sh |
|
wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_1.png |
|
|
|
wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_2.png |
|
``` |
|
|
|
|
|
```bash |
|
export MODEL_DIR="runwayml/stable-diffusion-v1-5" |
|
export OUTPUT_DIR="path to save model" |
|
|
|
accelerate launch train_controlnet.py \ |
|
--pretrained_model_name_or_path=$MODEL_DIR \ |
|
--output_dir=$OUTPUT_DIR \ |
|
--dataset_name=fusing/fill50k \ |
|
--resolution=512 \ |
|
--learning_rate=1e-5 \ |
|
--validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \ |
|
--validation_prompt "red circle with blue background" "cyan circle with brown floral background" \ |
|
--train_batch_size=4 |
|
``` |
|
|
|
This default configuration requires ~38GB VRAM. |
|
|
|
By default, the training script logs outputs to tensorboard. Pass `--report_to wandb` to use weights and |
|
biases. |
|
|
|
Gradient accumulation with a smaller batch size can be used to reduce training requirements to ~20 GB VRAM. |
|
|
|
```bash |
|
export MODEL_DIR="runwayml/stable-diffusion-v1-5" |
|
export OUTPUT_DIR="path to save model" |
|
|
|
accelerate launch train_controlnet.py \ |
|
--pretrained_model_name_or_path=$MODEL_DIR \ |
|
--output_dir=$OUTPUT_DIR \ |
|
--dataset_name=fusing/fill50k \ |
|
--resolution=512 \ |
|
--learning_rate=1e-5 \ |
|
--validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \ |
|
--validation_prompt "red circle with blue background" "cyan circle with brown floral background" \ |
|
--train_batch_size=1 \ |
|
--gradient_accumulation_steps=4 |
|
``` |
|
|
|
## Example results |
|
|
|
#### After 300 steps with batch size 8 |
|
|
|
| | | |
|
|-------------------|:-------------------------:| |
|
| | red circle with blue background | |
|
 |  | |
|
| | cyan circle with brown floral background | |
|
 |  | |
|
|
|
|
|
#### After 6000 steps with batch size 8: |
|
|
|
| | | |
|
|-------------------|:-------------------------:| |
|
| | red circle with blue background | |
|
 |  | |
|
| | cyan circle with brown floral background | |
|
 |  | |
|
|
|
## Training on a 16 GB GPU |
|
|
|
Optimizations: |
|
- Gradient checkpointing |
|
- bitsandbyte's 8-bit optimizer |
|
|
|
[bitandbytes install instructions](https://github.com/TimDettmers/bitsandbytes#requirements--installation). |
|
|
|
```bash |
|
export MODEL_DIR="runwayml/stable-diffusion-v1-5" |
|
export OUTPUT_DIR="path to save model" |
|
|
|
accelerate launch train_controlnet.py \ |
|
--pretrained_model_name_or_path=$MODEL_DIR \ |
|
--output_dir=$OUTPUT_DIR \ |
|
--dataset_name=fusing/fill50k \ |
|
--resolution=512 \ |
|
--learning_rate=1e-5 \ |
|
--validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \ |
|
--validation_prompt "red circle with blue background" "cyan circle with brown floral background" \ |
|
--train_batch_size=1 \ |
|
--gradient_accumulation_steps=4 \ |
|
--gradient_checkpointing \ |
|
--use_8bit_adam |
|
``` |
|
|
|
## Training on a 12 GB GPU |
|
|
|
Optimizations: |
|
- Gradient checkpointing |
|
- bitsandbyte's 8-bit optimizer |
|
- xformers |
|
- set grads to none |
|
|
|
```bash |
|
export MODEL_DIR="runwayml/stable-diffusion-v1-5" |
|
export OUTPUT_DIR="path to save model" |
|
|
|
accelerate launch train_controlnet.py \ |
|
--pretrained_model_name_or_path=$MODEL_DIR \ |
|
--output_dir=$OUTPUT_DIR \ |
|
--dataset_name=fusing/fill50k \ |
|
--resolution=512 \ |
|
--learning_rate=1e-5 \ |
|
--validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \ |
|
--validation_prompt "red circle with blue background" "cyan circle with brown floral background" \ |
|
--train_batch_size=1 \ |
|
--gradient_accumulation_steps=4 \ |
|
--gradient_checkpointing \ |
|
--use_8bit_adam \ |
|
--enable_xformers_memory_efficient_attention \ |
|
--set_grads_to_none |
|
``` |
|
|
|
When using `enable_xformers_memory_efficient_attention`, please make sure to install `xformers` by `pip install xformers`. |
|
|
|
## Training on an 8 GB GPU |
|
|
|
We have not exhaustively tested DeepSpeed support for ControlNet. While the configuration does |
|
save memory, we have not confirmed the configuration to train successfully. You will very likely |
|
have to make changes to the config to have a successful training run. |
|
|
|
Optimizations: |
|
- Gradient checkpointing |
|
- xformers |
|
- set grads to none |
|
- DeepSpeed stage 2 with parameter and optimizer offloading |
|
- fp16 mixed precision |
|
|
|
[DeepSpeed](https://www.deepspeed.ai/) can offload tensors from VRAM to either |
|
CPU or NVME. This requires significantly more RAM (about 25 GB). |
|
|
|
Use `accelerate config` to enable DeepSpeed stage 2. |
|
|
|
The relevant parts of the resulting accelerate config file are |
|
|
|
```yaml |
|
compute_environment: LOCAL_MACHINE |
|
deepspeed_config: |
|
gradient_accumulation_steps: 4 |
|
offload_optimizer_device: cpu |
|
offload_param_device: cpu |
|
zero3_init_flag: false |
|
zero_stage: 2 |
|
distributed_type: DEEPSPEED |
|
``` |
|
|
|
See [documentation](https://huggingface.co/docs/accelerate/usage_guides/deepspeed) for more DeepSpeed configuration options. |
|
|
|
Changing the default Adam optimizer to DeepSpeed's Adam |
|
`deepspeed.ops.adam.DeepSpeedCPUAdam` gives a substantial speedup but |
|
it requires CUDA toolchain with the same version as pytorch. 8-bit optimizer |
|
does not seem to be compatible with DeepSpeed at the moment. |
|
|
|
```bash |
|
export MODEL_DIR="runwayml/stable-diffusion-v1-5" |
|
export OUTPUT_DIR="path to save model" |
|
|
|
accelerate launch train_controlnet.py \ |
|
--pretrained_model_name_or_path=$MODEL_DIR \ |
|
--output_dir=$OUTPUT_DIR \ |
|
--dataset_name=fusing/fill50k \ |
|
--resolution=512 \ |
|
--validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \ |
|
--validation_prompt "red circle with blue background" "cyan circle with brown floral background" \ |
|
--train_batch_size=1 \ |
|
--gradient_accumulation_steps=4 \ |
|
--gradient_checkpointing \ |
|
--enable_xformers_memory_efficient_attention \ |
|
--set_grads_to_none \ |
|
--mixed_precision fp16 |
|
``` |
|
|
|
## Performing inference with the trained ControlNet |
|
|
|
The trained model can be run the same as the original ControlNet pipeline with the newly trained ControlNet. |
|
Set `base_model_path` and `controlnet_path` to the values `--pretrained_model_name_or_path` and |
|
`--output_dir` were respectively set to in the training script. |
|
|
|
```py |
|
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler |
|
from diffusers.utils import load_image |
|
import torch |
|
|
|
base_model_path = "path to model" |
|
controlnet_path = "path to controlnet" |
|
|
|
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16) |
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
base_model_path, controlnet=controlnet, torch_dtype=torch.float16 |
|
) |
|
|
|
# speed up diffusion process with faster scheduler and memory optimization |
|
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) |
|
# remove following line if xformers is not installed |
|
pipe.enable_xformers_memory_efficient_attention() |
|
|
|
pipe.enable_model_cpu_offload() |
|
|
|
control_image = load_image("./conditioning_image_1.png") |
|
prompt = "pale golden rod circle with old lace background" |
|
|
|
# generate image |
|
generator = torch.manual_seed(0) |
|
image = pipe( |
|
prompt, num_inference_steps=20, generator=generator, image=control_image |
|
).images[0] |
|
|
|
image.save("./output.png") |
|
``` |
|
|
|
## Training with Flax/JAX |
|
|
|
For faster training on TPUs and GPUs you can leverage the flax training example. Follow the instructions above to get the model and dataset before running the script. |
|
|
|
### Running on Google Cloud TPU |
|
|
|
See below for commands to set up a TPU VM(`--accelerator-type v4-8`). For more details about how to set up and use TPUs, refer to [Cloud docs for single VM setup](https://cloud.google.com/tpu/docs/run-calculation-jax). |
|
|
|
First create a single TPUv4-8 VM and connect to it: |
|
|
|
``` |
|
ZONE=us-central2-b |
|
TPU_TYPE=v4-8 |
|
VM_NAME=hg_flax |
|
|
|
gcloud alpha compute tpus tpu-vm create $VM_NAME \ |
|
--zone $ZONE \ |
|
--accelerator-type $TPU_TYPE \ |
|
--version tpu-vm-v4-base |
|
|
|
gcloud alpha compute tpus tpu-vm ssh $VM_NAME --zone $ZONE -- \ |
|
``` |
|
|
|
When connected install JAX `0.4.5`: |
|
|
|
``` |
|
pip install "jax[tpu]==0.4.5" -f https://storage.googleapis.com/jax-releases/libtpu_releases.html |
|
``` |
|
|
|
To verify that JAX was correctly installed, you can run the following command: |
|
|
|
``` |
|
import jax |
|
jax.device_count() |
|
``` |
|
|
|
This should display the number of TPU cores, which should be 4 on a TPUv4-8 VM. |
|
|
|
Then install Diffusers and the library's training dependencies: |
|
|
|
```bash |
|
git clone https://github.com/huggingface/diffusers |
|
cd diffusers |
|
pip install . |
|
``` |
|
|
|
Then cd in the example folder and run |
|
|
|
```bash |
|
pip install -U -r requirements_flax.txt |
|
``` |
|
|
|
Now let's downloading two conditioning images that we will use to run validation during the training in order to track our progress |
|
|
|
``` |
|
wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_1.png |
|
wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_2.png |
|
``` |
|
|
|
We encourage you to store or share your model with the community. To use huggingface hub, please login to your Hugging Face account, or ([create one](https://huggingface.co/docs/diffusers/main/en/training/hf.co/join) if you don’t have one already): |
|
|
|
``` |
|
huggingface-cli login |
|
``` |
|
|
|
Make sure you have the `MODEL_DIR`,`OUTPUT_DIR` and `HUB_MODEL_ID` environment variables set. The `OUTPUT_DIR` and `HUB_MODEL_ID` variables specify where to save the model to on the Hub: |
|
|
|
```bash |
|
export MODEL_DIR="runwayml/stable-diffusion-v1-5" |
|
export OUTPUT_DIR="control_out" |
|
export HUB_MODEL_ID="fill-circle-controlnet" |
|
``` |
|
|
|
And finally start the training |
|
|
|
```bash |
|
python3 train_controlnet_flax.py \ |
|
--pretrained_model_name_or_path=$MODEL_DIR \ |
|
--output_dir=$OUTPUT_DIR \ |
|
--dataset_name=fusing/fill50k \ |
|
--resolution=512 \ |
|
--learning_rate=1e-5 \ |
|
--validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \ |
|
--validation_prompt "red circle with blue background" "cyan circle with brown floral background" \ |
|
--validation_steps=1000 \ |
|
--train_batch_size=2 \ |
|
--revision="non-ema" \ |
|
--from_pt \ |
|
--report_to="wandb" \ |
|
--max_train_steps=10000 \ |
|
--push_to_hub \ |
|
--hub_model_id=$HUB_MODEL_ID |
|
``` |
|
|
|
Since we passed the `--push_to_hub` flag, it will automatically create a model repo under your huggingface account based on `$HUB_MODEL_ID`. By the end of training, the final checkpoint will be automatically stored on the hub. You can find an example model repo [here](https://huggingface.co/YiYiXu/fill-circle-controlnet). |
|
|
|
Our training script also provides limited support for streaming large datasets from the Hugging Face Hub. In order to enable streaming, one must also set `--max_train_samples`. Here is an example command: |
|
|
|
```bash |
|
python3 train_controlnet_flax.py \ |
|
--pretrained_model_name_or_path=$MODEL_DIR \ |
|
--output_dir=$OUTPUT_DIR \ |
|
--dataset_name=multimodalart/facesyntheticsspigacaptioned \ |
|
--streaming \ |
|
--conditioning_image_column=spiga_seg \ |
|
--image_column=image \ |
|
--caption_column=image_caption \ |
|
--resolution=512 \ |
|
--max_train_samples 50 \ |
|
--max_train_steps 5 \ |
|
--learning_rate=1e-5 \ |
|
--validation_steps=2 \ |
|
--train_batch_size=1 \ |
|
--revision="flax" \ |
|
--report_to="wandb" |
|
``` |
|
|
|
Note, however, that the performance of the TPUs might get bottlenecked as streaming with `datasets` is not optimized for images. For ensuring maximum throughput, we encourage you to explore the following options: |
|
|
|
* [Webdataset](https://webdataset.github.io/webdataset/) |
|
* [TorchData](https://github.com/pytorch/data) |
|
* [TensorFlow Datasets](https://www.tensorflow.org/datasets/tfless_tfds) |