Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,6 +9,11 @@ import requests
|
|
| 9 |
from tempfile import NamedTemporaryFile
|
| 10 |
import gc
|
| 11 |
import tensorflow_hub as hub
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# Ensure that Hugging Face uses the appropriate cache directory
|
| 14 |
os.environ['TRANSFORMERS_CACHE'] = '/app/cache'
|
|
@@ -16,13 +21,6 @@ os.environ['HF_HOME'] = '/app/cache'
|
|
| 16 |
|
| 17 |
movenet_model_path = '/models/movenet/movenet_lightning'
|
| 18 |
|
| 19 |
-
# Check if the model path exists
|
| 20 |
-
if not os.path.exists(movenet_model_path):
|
| 21 |
-
# Download the model from TensorFlow Hub
|
| 22 |
-
movenet_model = hub.load("https://tfhub.dev/google/movenet/singlepose/lightning/4")
|
| 23 |
-
else:
|
| 24 |
-
movenet_model = tf.saved_model.load(movenet_model_path)
|
| 25 |
-
|
| 26 |
# Keypoint dictionary for reference
|
| 27 |
KEYPOINT_DICT = {
|
| 28 |
'nose': 0,
|
|
@@ -88,6 +86,13 @@ def process_video():
|
|
| 88 |
cap.release()
|
| 89 |
os.remove(video_path)
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
# Process each frame with MoveNet (to get 3D keypoints and detect stance)
|
| 92 |
movenet_results = []
|
| 93 |
stances = []
|
|
@@ -128,11 +133,12 @@ def process_video():
|
|
| 128 |
|
| 129 |
# Generate captions for all 60 frames using BLIP
|
| 130 |
captions = []
|
| 131 |
-
blip_model = BlipForConditionalGeneration.from_pretrained('Salesforce/blip-image-captioning-base').to('cuda')
|
| 132 |
blip_processor = BlipProcessor.from_pretrained('Salesforce/blip-image-captioning-base')
|
| 133 |
|
| 134 |
for frame in frames:
|
| 135 |
-
|
|
|
|
| 136 |
with torch.no_grad():
|
| 137 |
caption = blip_model.generate(**inputs)
|
| 138 |
captions.append(blip_processor.decode(caption[0], skip_special_tokens=True))
|
|
@@ -144,14 +150,15 @@ def process_video():
|
|
| 144 |
|
| 145 |
# Use CLIP to assess the similarity of frames to a Muay Thai jab prompt, including stance
|
| 146 |
clip_results = []
|
| 147 |
-
clip_model = CLIPModel.from_pretrained('openai/clip-vit-base-patch32').to('cuda')
|
| 148 |
clip_processor = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32')
|
| 149 |
|
| 150 |
for i, frame in enumerate(frames):
|
|
|
|
| 151 |
stance = stances[i]
|
| 152 |
prompt = f"A person performing a Muay Thai jab in {stance} stance at {height} in in height, {weight} lbs in weight, and a wingspan of {wingspan} cm."
|
| 153 |
-
text_inputs = clip_processor(text=[prompt], return_tensors="pt").to('cuda')
|
| 154 |
-
image_inputs = clip_processor(images=
|
| 155 |
with torch.no_grad():
|
| 156 |
image_features = clip_model.get_image_features(**image_inputs)
|
| 157 |
text_features = clip_model.get_text_features(**text_inputs)
|
|
@@ -182,6 +189,7 @@ def process_video():
|
|
| 182 |
}
|
| 183 |
return jsonify(response)
|
| 184 |
except Exception as e:
|
|
|
|
| 185 |
return jsonify({"error": str(e)}), 500
|
| 186 |
|
| 187 |
if __name__ == '__main__':
|
|
|
|
| 9 |
from tempfile import NamedTemporaryFile
|
| 10 |
import gc
|
| 11 |
import tensorflow_hub as hub
|
| 12 |
+
import logging
|
| 13 |
+
from PIL import Image
|
| 14 |
+
|
| 15 |
+
# Configure logging
|
| 16 |
+
logging.basicConfig(level=logging.ERROR)
|
| 17 |
|
| 18 |
# Ensure that Hugging Face uses the appropriate cache directory
|
| 19 |
os.environ['TRANSFORMERS_CACHE'] = '/app/cache'
|
|
|
|
| 21 |
|
| 22 |
movenet_model_path = '/models/movenet/movenet_lightning'
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
# Keypoint dictionary for reference
|
| 25 |
KEYPOINT_DICT = {
|
| 26 |
'nose': 0,
|
|
|
|
| 86 |
cap.release()
|
| 87 |
os.remove(video_path)
|
| 88 |
|
| 89 |
+
# Check if the model path exists and load MoveNet model
|
| 90 |
+
if not os.path.exists(movenet_model_path):
|
| 91 |
+
# Download the model from TensorFlow Hub
|
| 92 |
+
movenet_model = hub.load("https://tfhub.dev/google/movenet/singlepose/lightning/4")
|
| 93 |
+
else:
|
| 94 |
+
movenet_model = tf.saved_model.load(movenet_model_path)
|
| 95 |
+
|
| 96 |
# Process each frame with MoveNet (to get 3D keypoints and detect stance)
|
| 97 |
movenet_results = []
|
| 98 |
stances = []
|
|
|
|
| 133 |
|
| 134 |
# Generate captions for all 60 frames using BLIP
|
| 135 |
captions = []
|
| 136 |
+
blip_model = BlipForConditionalGeneration.from_pretrained('Salesforce/blip-image-captioning-base').to('cuda' if torch.cuda.is_available() else 'cpu')
|
| 137 |
blip_processor = BlipProcessor.from_pretrained('Salesforce/blip-image-captioning-base')
|
| 138 |
|
| 139 |
for frame in frames:
|
| 140 |
+
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) # Convert frame to PIL image
|
| 141 |
+
inputs = blip_processor(images=frame_pil, return_tensors="pt").to('cuda' if torch.cuda.is_available() else 'cpu')
|
| 142 |
with torch.no_grad():
|
| 143 |
caption = blip_model.generate(**inputs)
|
| 144 |
captions.append(blip_processor.decode(caption[0], skip_special_tokens=True))
|
|
|
|
| 150 |
|
| 151 |
# Use CLIP to assess the similarity of frames to a Muay Thai jab prompt, including stance
|
| 152 |
clip_results = []
|
| 153 |
+
clip_model = CLIPModel.from_pretrained('openai/clip-vit-base-patch32').to('cuda' if torch.cuda.is_available() else 'cpu')
|
| 154 |
clip_processor = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32')
|
| 155 |
|
| 156 |
for i, frame in enumerate(frames):
|
| 157 |
+
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) # Convert frame to PIL image
|
| 158 |
stance = stances[i]
|
| 159 |
prompt = f"A person performing a Muay Thai jab in {stance} stance at {height} in in height, {weight} lbs in weight, and a wingspan of {wingspan} cm."
|
| 160 |
+
text_inputs = clip_processor(text=[prompt], return_tensors="pt").to('cuda' if torch.cuda.is_available() else 'cpu')
|
| 161 |
+
image_inputs = clip_processor(images=frame_pil, return_tensors="pt").to('cuda' if torch.cuda.is_available() else 'cpu')
|
| 162 |
with torch.no_grad():
|
| 163 |
image_features = clip_model.get_image_features(**image_inputs)
|
| 164 |
text_features = clip_model.get_text_features(**text_inputs)
|
|
|
|
| 189 |
}
|
| 190 |
return jsonify(response)
|
| 191 |
except Exception as e:
|
| 192 |
+
logging.error(str(e))
|
| 193 |
return jsonify({"error": str(e)}), 500
|
| 194 |
|
| 195 |
if __name__ == '__main__':
|