Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -23,14 +23,6 @@ if not os.path.exists(movenet_model_path):
|
|
23 |
else:
|
24 |
movenet_model = tf.saved_model.load(movenet_model_path)
|
25 |
|
26 |
-
# Load BLIP model
|
27 |
-
blip_model = BlipForConditionalGeneration.from_pretrained('Salesforce/blip-image-captioning-base')
|
28 |
-
blip_processor = BlipProcessor.from_pretrained('Salesforce/blip-image-captioning-base')
|
29 |
-
|
30 |
-
# Load CLIP model
|
31 |
-
clip_model = CLIPModel.from_pretrained('openai/clip-vit-base-patch32')
|
32 |
-
clip_processor = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32')
|
33 |
-
|
34 |
# Keypoint dictionary for reference
|
35 |
KEYPOINT_DICT = {
|
36 |
'nose': 0,
|
@@ -60,13 +52,13 @@ def process_video():
|
|
60 |
# Clear previous cache
|
61 |
gc.collect()
|
62 |
torch.cuda.empty_cache()
|
|
|
63 |
# Get the video URL from the request
|
64 |
video_url = request.json.get('videoURL')
|
65 |
height = request.json.get('height')
|
66 |
weight = request.json.get('weight')
|
67 |
wingspan = request.json.get('wingspan')
|
68 |
|
69 |
-
|
70 |
if not video_url:
|
71 |
return jsonify({"error": "No video URL provided"}), 400
|
72 |
|
@@ -99,16 +91,7 @@ def process_video():
|
|
99 |
# Process each frame with MoveNet (to get 3D keypoints and detect stance)
|
100 |
movenet_results = []
|
101 |
stances = []
|
102 |
-
hip_rotations = []
|
103 |
-
arm_extensions = []
|
104 |
-
stepping_jabs = []
|
105 |
guard_up = []
|
106 |
-
hand_returned = []
|
107 |
-
hips_width_apart = []
|
108 |
-
leg_angle_correct = []
|
109 |
-
punch_started = False
|
110 |
-
initial_left_wrist = None
|
111 |
-
initial_right_wrist = None
|
112 |
|
113 |
for frame_index, frame in enumerate(frames):
|
114 |
input_tensor = tf.image.resize_with_pad(tf.convert_to_tensor(frame, dtype=tf.uint8), 256, 256)
|
@@ -139,26 +122,46 @@ def process_video():
|
|
139 |
right_hand_near_head = abs(right_wrist[1] - nose[1]) < guard_threshold
|
140 |
guard_up.append(left_hand_near_head and right_hand_near_head)
|
141 |
|
|
|
|
|
|
|
|
|
142 |
# Generate captions for all 60 frames using BLIP
|
143 |
captions = []
|
|
|
|
|
|
|
144 |
for frame in frames:
|
145 |
-
inputs = blip_processor(images=frame, return_tensors="pt")
|
146 |
with torch.no_grad():
|
147 |
caption = blip_model.generate(**inputs)
|
148 |
captions.append(blip_processor.decode(caption[0], skip_special_tokens=True))
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
# Use CLIP to assess the similarity of frames to a Muay Thai jab prompt, including stance
|
151 |
clip_results = []
|
|
|
|
|
|
|
152 |
for i, frame in enumerate(frames):
|
153 |
stance = stances[i]
|
154 |
prompt = f"A person performing a Muay Thai jab in {stance} stance at {height} in in height, {weight} lbs in weight, and a wingspan of {wingspan} cm."
|
155 |
-
text_inputs = clip_processor(text=[prompt], return_tensors="pt")
|
156 |
-
image_inputs = clip_processor(images=frame, return_tensors="pt")
|
157 |
with torch.no_grad():
|
158 |
image_features = clip_model.get_image_features(**image_inputs)
|
159 |
text_features = clip_model.get_text_features(**text_inputs)
|
160 |
similarity = torch.nn.functional.cosine_similarity(image_features, text_features)
|
161 |
clip_results.append(similarity.item())
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
# Calculate score based on CLIP results and BLIP captions
|
164 |
avg_clip_similarity = sum(clip_results) / len(clip_results) if clip_results else 0
|
|
|
23 |
else:
|
24 |
movenet_model = tf.saved_model.load(movenet_model_path)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
# Keypoint dictionary for reference
|
27 |
KEYPOINT_DICT = {
|
28 |
'nose': 0,
|
|
|
52 |
# Clear previous cache
|
53 |
gc.collect()
|
54 |
torch.cuda.empty_cache()
|
55 |
+
|
56 |
# Get the video URL from the request
|
57 |
video_url = request.json.get('videoURL')
|
58 |
height = request.json.get('height')
|
59 |
weight = request.json.get('weight')
|
60 |
wingspan = request.json.get('wingspan')
|
61 |
|
|
|
62 |
if not video_url:
|
63 |
return jsonify({"error": "No video URL provided"}), 400
|
64 |
|
|
|
91 |
# Process each frame with MoveNet (to get 3D keypoints and detect stance)
|
92 |
movenet_results = []
|
93 |
stances = []
|
|
|
|
|
|
|
94 |
guard_up = []
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
for frame_index, frame in enumerate(frames):
|
97 |
input_tensor = tf.image.resize_with_pad(tf.convert_to_tensor(frame, dtype=tf.uint8), 256, 256)
|
|
|
122 |
right_hand_near_head = abs(right_wrist[1] - nose[1]) < guard_threshold
|
123 |
guard_up.append(left_hand_near_head and right_hand_near_head)
|
124 |
|
125 |
+
# Free up memory used by MoveNet
|
126 |
+
del movenet_model
|
127 |
+
gc.collect()
|
128 |
+
|
129 |
# Generate captions for all 60 frames using BLIP
|
130 |
captions = []
|
131 |
+
blip_model = BlipForConditionalGeneration.from_pretrained('Salesforce/blip-image-captioning-base').to('cuda')
|
132 |
+
blip_processor = BlipProcessor.from_pretrained('Salesforce/blip-image-captioning-base')
|
133 |
+
|
134 |
for frame in frames:
|
135 |
+
inputs = blip_processor(images=frame, return_tensors="pt").to('cuda')
|
136 |
with torch.no_grad():
|
137 |
caption = blip_model.generate(**inputs)
|
138 |
captions.append(blip_processor.decode(caption[0], skip_special_tokens=True))
|
139 |
+
|
140 |
+
# Free up memory used by BLIP
|
141 |
+
del blip_model, blip_processor
|
142 |
+
torch.cuda.empty_cache()
|
143 |
+
gc.collect()
|
144 |
|
145 |
# Use CLIP to assess the similarity of frames to a Muay Thai jab prompt, including stance
|
146 |
clip_results = []
|
147 |
+
clip_model = CLIPModel.from_pretrained('openai/clip-vit-base-patch32').to('cuda')
|
148 |
+
clip_processor = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32')
|
149 |
+
|
150 |
for i, frame in enumerate(frames):
|
151 |
stance = stances[i]
|
152 |
prompt = f"A person performing a Muay Thai jab in {stance} stance at {height} in in height, {weight} lbs in weight, and a wingspan of {wingspan} cm."
|
153 |
+
text_inputs = clip_processor(text=[prompt], return_tensors="pt").to('cuda')
|
154 |
+
image_inputs = clip_processor(images=frame, return_tensors="pt").to('cuda')
|
155 |
with torch.no_grad():
|
156 |
image_features = clip_model.get_image_features(**image_inputs)
|
157 |
text_features = clip_model.get_text_features(**text_inputs)
|
158 |
similarity = torch.nn.functional.cosine_similarity(image_features, text_features)
|
159 |
clip_results.append(similarity.item())
|
160 |
+
|
161 |
+
# Free up memory used by CLIP
|
162 |
+
del clip_model, clip_processor
|
163 |
+
torch.cuda.empty_cache()
|
164 |
+
gc.collect()
|
165 |
|
166 |
# Calculate score based on CLIP results and BLIP captions
|
167 |
avg_clip_similarity = sum(clip_results) / len(clip_results) if clip_results else 0
|