Spaces:
Sleeping
Sleeping
# Dataset | |
## Training Data | |
We use [AMASS](https://amass.is.tue.mpg.de/), [InstaVariety](https://github.com/akanazawa/human_dynamics/blob/master/doc/insta_variety.md), [MPI-INF-3DHP](https://vcai.mpi-inf.mpg.de/3dhp-dataset/), [Human3.6M](http://vision.imar.ro/human3.6m/description.php), and [3DPW](https://virtualhumans.mpi-inf.mpg.de/3DPW/) datasets for training. Please register to their websites to download and process the data. You can download parsed ViT version of InstaVariety, MPI-INF-3DHP, Human3.6M, and 3DPW data from the [Google Drive](https://drive.google.com/drive/folders/13T2ghVvrw_fEk3X-8L0e6DVSYx_Og8o3?usp=sharing). You can save the data under `dataset/parsed_data` folder. | |
### Process AMASS dataset | |
After downloading AMASS dataset, you can process it by running: | |
```bash | |
python -m lib.data_utils.amass_utils | |
``` | |
The processed data will be stored at `dataset/parsed_data/amass.pth`. | |
### Process 3DPW, MPII3D, Human3.6M, and InstaVariety datasets | |
First, visit [TCMR](https://github.com/hongsukchoi/TCMR_RELEASE) and download preprocessed data at `dataset/parsed_data/TCMR_preproc/'. | |
Next, prepare 2D keypoints detection using [ViTPose](https://github.com/ViTAE-Transformer/ViTPose) and store the results at `dataset/detection_results/\<DATAsET-NAME>/\<SEQUENCE_NAME.npy>'. You may need to download all images to prepare the detection results. | |
For Human36M, MPII3D, and InstaVariety datasets, you need to also download [NeuralAnnot](https://github.com/mks0601/NeuralAnnot_RELEASE) pseudo groundtruth SMPL label. As mentioned in our paper, we do not supervise WHAM on this label, but use it for neural initialization step. | |
Finally, run following codes to preprocess all training data. | |
```bash | |
python -m lib.data_utils.threedpw_train_utils # 3DPW dataset | |
# [Coming] python -m lib.data_utils.human36m_train_utils # Human3.6M dataset | |
# [Coming] python -m lib.data_utils.mpii3d_train_utils # MPI-INF-3DHP dataset | |
# [Coming] python -m lib.data_utils.insta_train_utils # InstaVariety dataset | |
``` | |
### Process BEDLAM dataset | |
Will be updated. | |
## Evaluation Data | |
We use [3DPW](https://virtualhumans.mpi-inf.mpg.de/3DPW/), [RICH](https://rich.is.tue.mpg.de/), and [EMDB](https://eth-ait.github.io/emdb/) for the evaluation. We provide the parsed data for the evaluation. Please download the data from [Google Drive](https://drive.google.com/drive/folders/13T2ghVvrw_fEk3X-8L0e6DVSYx_Og8o3?usp=sharing) and place them at `dataset/parsed_data/`. | |
To process the data at your end, please | |
1) Download parsed 3DPW data from [TCMR](https://github.com/hongsukchoi/TCMR_RELEASE) and store `dataset/parsed_data/TCMR_preproc/'. | |
2) Run [ViTPose](https://github.com/ViTAE-Transformer/ViTPose) on all test data and store the results at `dataset/detection_results/\<DATAsET-NAME>'. | |
3) Run following codes. | |
```bash | |
python -m lib.data_utils.threedpw_eval_utils --split <"val" or "test"> # 3DPW dataset | |
python -m lib.data_utils.emdb_eval_utils --split <"1" or "2"> # EMDB dataset | |
python -m lib.data_utils.rich_eval_utils # RICH dataset | |
``` |