Firefly777a's picture
switched from ada model to davinci
9dd8d0a
raw
history blame
3.71 kB
'''
This script calls the ada model from openai api to predict the next few words.
'''
import os
os.system("pip install --upgrade pip")
from pprint import pprint
os.system("pip install git+https://github.com/openai/whisper.git")
import sys
print("Sys: ", sys.executable)
os.system("pip install openai")
import openai
import gradio as gr
import whisper
from transformers import pipeline
import torch
from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
import time
# import streaming.py
# from next_word_prediction import GPT2
#gpt2 = AutoModelForCausalLM.from_pretrained("gpt2", return_dict_in_generate=True)
#tokenizer = AutoTokenizer.from_pretrained("gpt2")
### /code snippet
# get gpt2 model
#generator = pipeline('text-generation', model='gpt2')
# whisper model specification
model = whisper.load_model("tiny")
def inference(audio, state=""):
# load audio data
audio = whisper.load_audio(audio)
# ensure sample is in correct format for inference
audio = whisper.pad_or_trim(audio)
# generate a log-mel spetrogram of the audio data
mel = whisper.log_mel_spectrogram(audio).to(model.device)
_, probs = model.detect_language(mel)
# decode audio data
options = whisper.DecodingOptions(fp16 = False)
# transcribe speech to text
result = whisper.decode(model, mel, options)
print("result pre gp model from whisper: ", result, ".text ", result.text, "and the data type: ", type(result.text))
PROMPT = """This is a tool for helping someone with memory issues remember the next word.
The predictions follow a few rules:
1) The predictions are suggestions of ways to continue the transcript as if someone forgot what the next word was.
2) The predictions do not repeat themselves.
3) The predictions focus on suggesting nouns, adjectives, and verbs.
4) The predictions are related to the context in the transcript.
EXAMPLES:
Transcript: Tomorrow night we're going out to
Prediction: The Movies, A Restaurant, A Baseball Game, The Theater, A Party for a friend
Transcript: I would like to order a cheeseburger with a side of
Prediction: Frnech fries, Milkshake, Apple slices, Side salad, Extra katsup
Transcript: My friend Savanah is
Prediction: An elecrical engineer, A marine biologist, A classical musician
Transcript: I need to buy a birthday
Prediction: Present, Gift, Cake, Card
Transcript: """
text = PROMPT + result.text + "\nPrediction: "
openai.api_key = os.environ["Openai_APIkey"]
response = openai.Completion.create(
model="text-davinci-003",
prompt=text,
temperature=0.9,
max_tokens=8,
n=5)
infers = []
temp = []
infered=[]
for i in range(5):
print("print1 ", response['choices'][i]['text'])
temp.append(response['choices'][i]['text'])
print("print2: infers ", infers)
print("print3: Responses ", response)
print("Object type of response: ", type(response))
#infered = list(map(lambda x: x.split(',')[0], infers))
#print("Infered type is: ", type(infered))
infers = list(map(lambda x: x.replace("\n", ""), temp))
#infered = list(map(lambda x: x.split(','), infers))
# result.text
#return getText, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
return result.text, state, infers
# get audio from microphone
gr.Interface(
fn=inference,
inputs=[gr.inputs.Audio(source="microphone", type="filepath"), "state"],
outputs=["textbox","state","textbox"],
live=True).launch()