File size: 3,711 Bytes
2cc8a36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bdb719
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5153c48
8bdb719
2cc8a36
 
 
 
9dd8d0a
2cc8a36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bdb719
 
 
2cc8a36
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

'''
This script calls the ada model from openai api to predict the next few words.
'''
import os
os.system("pip install --upgrade pip")
from pprint import pprint
os.system("pip install git+https://github.com/openai/whisper.git")
import sys
print("Sys: ", sys.executable)
os.system("pip install openai")
import openai
import gradio as gr
import whisper
from transformers import pipeline
import torch
from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
import time
# import streaming.py
# from next_word_prediction import GPT2




#gpt2 = AutoModelForCausalLM.from_pretrained("gpt2", return_dict_in_generate=True)
#tokenizer = AutoTokenizer.from_pretrained("gpt2")

### /code snippet


# get gpt2 model
#generator = pipeline('text-generation', model='gpt2')

# whisper model specification 
model = whisper.load_model("tiny")


        
def inference(audio, state=""):
    # load audio data
    audio = whisper.load_audio(audio)
    # ensure sample is in correct format for inference
    audio = whisper.pad_or_trim(audio)

    # generate a log-mel spetrogram of the audio data
    mel = whisper.log_mel_spectrogram(audio).to(model.device)
    
    _, probs = model.detect_language(mel)

    # decode audio data
    options = whisper.DecodingOptions(fp16 = False)
    # transcribe speech to text
    result = whisper.decode(model, mel, options)
    print("result pre gp model from whisper: ", result, ".text ", result.text, "and the data type: ", type(result.text))

    PROMPT = """This is a tool for helping someone with memory issues remember the next word. 

The predictions follow a few rules:
1) The predictions are suggestions of ways to continue the transcript as if someone forgot what the next word was.
2) The predictions do not repeat themselves.
3) The predictions focus on suggesting nouns, adjectives, and verbs.
4) The predictions are related to the context in the transcript.
    
EXAMPLES:
Transcript: Tomorrow night we're going out to 
Prediction: The Movies, A Restaurant, A Baseball Game, The Theater, A Party for a friend   
Transcript: I would like to order a cheeseburger with a side of
Prediction: Frnech fries, Milkshake, Apple slices, Side salad, Extra katsup 
Transcript: My friend Savanah is
Prediction: An elecrical engineer, A marine biologist, A classical musician 
Transcript: I need to buy a birthday
Prediction: Present, Gift, Cake, Card
Transcript: """
    text = PROMPT + result.text + "\nPrediction: "
    
    openai.api_key = os.environ["Openai_APIkey"]
    
    response = openai.Completion.create(
                        model="text-davinci-003",
                        prompt=text,
                        temperature=0.9,
                        max_tokens=8,
                        n=5)

    infers = []
    temp = []
    infered=[]
    for i in range(5):
        print("print1 ", response['choices'][i]['text'])
        temp.append(response['choices'][i]['text'])
        print("print2: infers ", infers)
        print("print3: Responses ", response)
        print("Object type of response: ", type(response))
        #infered = list(map(lambda x: x.split(',')[0], infers))
        #print("Infered type is: ", type(infered))
        infers = list(map(lambda x: x.replace("\n", ""), temp))
        #infered = list(map(lambda x: x.split(','), infers))

        
        

    # result.text
    #return getText, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
    return result.text, state, infers



# get audio from microphone 
gr.Interface(
    fn=inference, 
    inputs=[gr.inputs.Audio(source="microphone", type="filepath"), "state"],
    outputs=["textbox","state","textbox"],
    live=True).launch()