gfgf / app.py
Ffftdtd5dtft's picture
Update app.py
ae48414 verified
raw
history blame
10.5 kB
import os
import redis
import pickle
import torch
from PIL import Image
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, FluxPipeline, DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_video
from transformers import pipeline as transformers_pipeline, AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
from audiocraft.models import MusicGen
import gradio as gr
from huggingface_hub import snapshot_download, HfApi, HfFolder
import multiprocessing
import io
import time
# Obtener las variables de entorno
hf_token = os.getenv("HF_TOKEN")
redis_host = os.getenv("REDIS_HOST")
redis_port = int(os.getenv("REDIS_PORT", 6379)) # Valor predeterminado si no se proporciona
redis_password = os.getenv("REDIS_PASSWORD")
HfFolder.save_token(hf_token)
def connect_to_redis():
while True:
try:
redis_client = redis.Redis(host=redis_host, port=redis_port, password=redis_password)
redis_client.ping() # Verifica si la conexión está activa
print("Connected to Redis successfully.")
return redis_client
except (redis.exceptions.ConnectionError, redis.exceptions.TimeoutError, BrokenPipeError) as e:
print(f"Connection to Redis failed: {e}. Retrying in 1 second...")
time.sleep(1)
def reconnect_if_needed(redis_client):
try:
redis_client.ping()
except (redis.exceptions.ConnectionError, redis.exceptions.TimeoutError, BrokenPipeError):
print("Reconnecting to Redis...")
return connect_to_redis()
return redis_client
def load_object_from_redis(key):
redis_client = connect_to_redis()
redis_client = reconnect_if_needed(redis_client)
try:
obj_data = redis_client.get(key)
return pickle.loads(obj_data) if obj_data else None
except (pickle.PickleError, redis.exceptions.RedisError) as e:
print(f"Failed to load object from Redis: {e}")
return None
def save_object_to_redis(key, obj):
redis_client = connect_to_redis()
redis_client = reconnect_if_needed(redis_client)
try:
if not redis_client.exists(key): # Solo guarda si no existe
redis_client.set(key, pickle.dumps(obj))
print(f"Object saved to Redis: {key}")
except redis.exceptions.RedisError as e:
print(f"Failed to save object to Redis: {e}")
def get_model_or_download(model_id, redis_key, loader_func):
model = load_object_from_redis(redis_key)
if model:
print(f"Model loaded from Redis: {redis_key}")
return model
try:
model = loader_func(model_id, torch_dtype=torch.float16)
save_object_to_redis(redis_key, model)
print(f"Model downloaded and saved to Redis: {redis_key}")
except Exception as e:
print(f"Failed to load or save model: {e}")
return model
def generate_image(prompt):
redis_key = f"generated_image_{prompt}"
image = load_object_from_redis(redis_key)
if not image:
try:
image = text_to_image_pipeline(prompt).images[0]
save_object_to_redis(redis_key, image)
except Exception as e:
print(f"Failed to generate image: {e}")
return None
return image
def edit_image_with_prompt(image, prompt, strength=0.75):
redis_key = f"edited_image_{prompt}_{strength}"
edited_image = load_object_from_redis(redis_key)
if not edited_image:
try:
edited_image = img2img_pipeline(prompt=prompt, init_image=image.convert("RGB"), strength=strength).images[0]
save_object_to_redis(redis_key, edited_image)
except Exception as e:
print(f"Failed to edit image: {e}")
return None
return edited_image
def generate_song(prompt, duration=10):
redis_key = f"generated_song_{prompt}_{duration}"
song = load_object_from_redis(redis_key)
if not song:
try:
song = music_gen.generate(prompt, duration=duration)
save_object_to_redis(redis_key, song)
except Exception as e:
print(f"Failed to generate song: {e}")
return None
return song
def generate_text(prompt):
redis_key = f"generated_text_{prompt}"
text = load_object_from_redis(redis_key)
if not text:
try:
text = text_gen_pipeline([{"role": "user", "content": prompt}], max_new_tokens=256)[0]["generated_text"].strip()
save_object_to_redis(redis_key, text)
except Exception as e:
print(f"Failed to generate text: {e}")
return None
return text
def generate_flux_image(prompt):
redis_key = f"generated_flux_image_{prompt}"
flux_image = load_object_from_redis(redis_key)
if not flux_image:
try:
flux_image = flux_pipeline(
prompt,
guidance_scale=0.0,
num_inference_steps=4,
max_sequence_length=256,
generator=torch.Generator("cpu").manual_seed(0)
).images[0]
save_object_to_redis(redis_key, flux_image)
except Exception as e:
print(f"Failed to generate flux image: {e}")
return None
return flux_image
def generate_code(prompt):
redis_key = f"generated_code_{prompt}"
code = load_object_from_redis(redis_key)
if not code:
try:
inputs = starcoder_tokenizer.encode(prompt, return_tensors="pt").to("cuda")
outputs = starcoder_model.generate(inputs)
code = starcoder_tokenizer.decode(outputs[0])
save_object_to_redis(redis_key, code)
except Exception as e:
print(f"Failed to generate code: {e}")
return None
return code
def generate_video(prompt):
redis_key = f"generated_video_{prompt}"
video = load_object_from_redis(redis_key)
if not video:
try:
pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
video = export_to_video(pipe(prompt, num_inference_steps=25).frames)
save_object_to_redis(redis_key, video)
except Exception as e:
print(f"Failed to generate video: {e}")
return None
return video
def test_model_meta_llama():
redis_key = "meta_llama_test_response"
response = load_object_from_redis(redis_key)
if not response:
try:
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"}
]
response = meta_llama_pipeline(messages, max_new_tokens=256)[0]["generated_text"].strip()
save_object_to_redis(redis_key, response)
except Exception as e:
print(f"Failed to test Meta-Llama: {e}")
return None
return response
def train_model(model, dataset, epochs, batch_size, learning_rate):
output_dir = io.BytesIO()
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=epochs,
per_device_train_batch_size=batch_size,
learning_rate=learning_rate,
)
trainer = Trainer(model=model, args=training_args, train_dataset=dataset)
try:
trainer.train()
save_object_to_redis("trained_model", model)
save_object_to_redis("training_results", output_dir.getvalue())
except Exception as e:
print(f"Failed to train model: {e}")
def run_task(task_queue):
while True:
task = task_queue.get()
if task is None:
break
func, args, kwargs = task
try:
func(*args, **kwargs)
except Exception as e:
print(f"Failed to run task: {e}")
task_queue = multiprocessing.Queue()
num_processes = multiprocessing.cpu_count()
processes = []
for _ in range(num_processes):
p = multiprocessing.Process(target=run_task, args=(task_queue,))
p.start()
processes.append(p)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
text_to_image_pipeline = get_model_or_download("CompVis/stable-diffusion-v1-4", "text_to_image_model", StableDiffusionPipeline.from_pretrained).to(device)
img2img_pipeline = get_model_or_download("CompVis/stable-diffusion-v1-4", "img2img_model", StableDiffusionImg2ImgPipeline.from_pretrained).to(device)
flux_pipeline = get_model_or_download("CompVis/stable-diffusion-flux", "flux_model", FluxPipeline.from_pretrained).to(device)
text_gen_pipeline = transformers_pipeline("text-generation", model="bigcode/starcoder", tokenizer="bigcode/starcoder", device=0)
music_gen = load_object_from_redis("music_gen") or MusicGen.from_pretrained('melody')
meta_llama_pipeline = get_model_or_download("meta/meta-llama-7b", "meta_llama_model", transformers_pipeline)
gen_image_tab = gr.Interface(generate_image, gr.inputs.Textbox(label="Prompt:"), gr.outputs.Image(type="pil"), title="Generate Image")
edit_image_tab = gr.Interface(edit_image_with_prompt, [gr.inputs.Image(type="pil", label="Image:"), gr.inputs.Textbox(label="Prompt:"), gr.inputs.Slider(0.1, 1.0, 0.75, step=0.05, label="Strength:")], gr.outputs.Image(type="pil"), title="Edit Image")
generate_song_tab = gr.Interface(generate_song, [gr.inputs.Textbox(label="Prompt:"), gr.inputs.Slider(5, 60, 10, step=1, label="Duration (s):")], gr.outputs.Audio(type="numpy"), title="Generate Songs")
generate_text_tab = gr.Interface(generate_text, gr.inputs.Textbox(label="Prompt:"), gr.outputs.Textbox(label="Generated Text:"), title="Generate Text")
generate_flux_image_tab = gr.Interface(generate_flux_image, gr.inputs.Textbox(label="Prompt:"), gr.outputs.Image(type="pil"), title="Generate FLUX Images")
model_meta_llama_test_tab = gr.Interface(test_model_meta_llama, gr.inputs.Textbox(label="Test Input:"), gr.outputs.Textbox(label="Model Output:"), title="Test Meta-Llama")
app = gr.TabbedInterface(
[gen_image_tab, edit_image_tab, generate_song_tab, generate_text_tab, generate_flux_image_tab, model_meta_llama_test_tab],
["Generate Image", "Edit Image", "Generate Song", "Generate Text", "Generate FLUX Image", "Test Meta-Llama"]
)
app.launch(share=True)
for _ in range(num_processes):
task_queue.put(None)
for p in processes:
p.join()