Spaces:
Runtime error
Runtime error
File size: 10,474 Bytes
7d31abf f13c41f 2779600 f13c41f 2779600 f13c41f ae48414 f13c41f 25c2784 2779600 25c2784 2779600 25c2784 2779600 f13c41f 2779600 25c2784 f13c41f 2779600 25c2784 f13c41f 25c2784 ae48414 f13c41f 25c2784 ae48414 25c2784 f13c41f 25c2784 ae48414 25c2784 f13c41f 25c2784 ae48414 25c2784 f13c41f 25c2784 ae48414 25c2784 f13c41f 25c2784 ae48414 25c2784 f13c41f 25c2784 ae48414 25c2784 f13c41f 25c2784 ae48414 25c2784 f13c41f 25c2784 ae48414 25c2784 f13c41f ae48414 f13c41f ae48414 f13c41f ae48414 f13c41f ae48414 f13c41f 2779600 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import os
import redis
import pickle
import torch
from PIL import Image
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, FluxPipeline, DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_video
from transformers import pipeline as transformers_pipeline, AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
from audiocraft.models import MusicGen
import gradio as gr
from huggingface_hub import snapshot_download, HfApi, HfFolder
import multiprocessing
import io
import time
# Obtener las variables de entorno
hf_token = os.getenv("HF_TOKEN")
redis_host = os.getenv("REDIS_HOST")
redis_port = int(os.getenv("REDIS_PORT", 6379)) # Valor predeterminado si no se proporciona
redis_password = os.getenv("REDIS_PASSWORD")
HfFolder.save_token(hf_token)
def connect_to_redis():
while True:
try:
redis_client = redis.Redis(host=redis_host, port=redis_port, password=redis_password)
redis_client.ping() # Verifica si la conexión está activa
print("Connected to Redis successfully.")
return redis_client
except (redis.exceptions.ConnectionError, redis.exceptions.TimeoutError, BrokenPipeError) as e:
print(f"Connection to Redis failed: {e}. Retrying in 1 second...")
time.sleep(1)
def reconnect_if_needed(redis_client):
try:
redis_client.ping()
except (redis.exceptions.ConnectionError, redis.exceptions.TimeoutError, BrokenPipeError):
print("Reconnecting to Redis...")
return connect_to_redis()
return redis_client
def load_object_from_redis(key):
redis_client = connect_to_redis()
redis_client = reconnect_if_needed(redis_client)
try:
obj_data = redis_client.get(key)
return pickle.loads(obj_data) if obj_data else None
except (pickle.PickleError, redis.exceptions.RedisError) as e:
print(f"Failed to load object from Redis: {e}")
return None
def save_object_to_redis(key, obj):
redis_client = connect_to_redis()
redis_client = reconnect_if_needed(redis_client)
try:
if not redis_client.exists(key): # Solo guarda si no existe
redis_client.set(key, pickle.dumps(obj))
print(f"Object saved to Redis: {key}")
except redis.exceptions.RedisError as e:
print(f"Failed to save object to Redis: {e}")
def get_model_or_download(model_id, redis_key, loader_func):
model = load_object_from_redis(redis_key)
if model:
print(f"Model loaded from Redis: {redis_key}")
return model
try:
model = loader_func(model_id, torch_dtype=torch.float16)
save_object_to_redis(redis_key, model)
print(f"Model downloaded and saved to Redis: {redis_key}")
except Exception as e:
print(f"Failed to load or save model: {e}")
return model
def generate_image(prompt):
redis_key = f"generated_image_{prompt}"
image = load_object_from_redis(redis_key)
if not image:
try:
image = text_to_image_pipeline(prompt).images[0]
save_object_to_redis(redis_key, image)
except Exception as e:
print(f"Failed to generate image: {e}")
return None
return image
def edit_image_with_prompt(image, prompt, strength=0.75):
redis_key = f"edited_image_{prompt}_{strength}"
edited_image = load_object_from_redis(redis_key)
if not edited_image:
try:
edited_image = img2img_pipeline(prompt=prompt, init_image=image.convert("RGB"), strength=strength).images[0]
save_object_to_redis(redis_key, edited_image)
except Exception as e:
print(f"Failed to edit image: {e}")
return None
return edited_image
def generate_song(prompt, duration=10):
redis_key = f"generated_song_{prompt}_{duration}"
song = load_object_from_redis(redis_key)
if not song:
try:
song = music_gen.generate(prompt, duration=duration)
save_object_to_redis(redis_key, song)
except Exception as e:
print(f"Failed to generate song: {e}")
return None
return song
def generate_text(prompt):
redis_key = f"generated_text_{prompt}"
text = load_object_from_redis(redis_key)
if not text:
try:
text = text_gen_pipeline([{"role": "user", "content": prompt}], max_new_tokens=256)[0]["generated_text"].strip()
save_object_to_redis(redis_key, text)
except Exception as e:
print(f"Failed to generate text: {e}")
return None
return text
def generate_flux_image(prompt):
redis_key = f"generated_flux_image_{prompt}"
flux_image = load_object_from_redis(redis_key)
if not flux_image:
try:
flux_image = flux_pipeline(
prompt,
guidance_scale=0.0,
num_inference_steps=4,
max_sequence_length=256,
generator=torch.Generator("cpu").manual_seed(0)
).images[0]
save_object_to_redis(redis_key, flux_image)
except Exception as e:
print(f"Failed to generate flux image: {e}")
return None
return flux_image
def generate_code(prompt):
redis_key = f"generated_code_{prompt}"
code = load_object_from_redis(redis_key)
if not code:
try:
inputs = starcoder_tokenizer.encode(prompt, return_tensors="pt").to("cuda")
outputs = starcoder_model.generate(inputs)
code = starcoder_tokenizer.decode(outputs[0])
save_object_to_redis(redis_key, code)
except Exception as e:
print(f"Failed to generate code: {e}")
return None
return code
def generate_video(prompt):
redis_key = f"generated_video_{prompt}"
video = load_object_from_redis(redis_key)
if not video:
try:
pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
video = export_to_video(pipe(prompt, num_inference_steps=25).frames)
save_object_to_redis(redis_key, video)
except Exception as e:
print(f"Failed to generate video: {e}")
return None
return video
def test_model_meta_llama():
redis_key = "meta_llama_test_response"
response = load_object_from_redis(redis_key)
if not response:
try:
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"}
]
response = meta_llama_pipeline(messages, max_new_tokens=256)[0]["generated_text"].strip()
save_object_to_redis(redis_key, response)
except Exception as e:
print(f"Failed to test Meta-Llama: {e}")
return None
return response
def train_model(model, dataset, epochs, batch_size, learning_rate):
output_dir = io.BytesIO()
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=epochs,
per_device_train_batch_size=batch_size,
learning_rate=learning_rate,
)
trainer = Trainer(model=model, args=training_args, train_dataset=dataset)
try:
trainer.train()
save_object_to_redis("trained_model", model)
save_object_to_redis("training_results", output_dir.getvalue())
except Exception as e:
print(f"Failed to train model: {e}")
def run_task(task_queue):
while True:
task = task_queue.get()
if task is None:
break
func, args, kwargs = task
try:
func(*args, **kwargs)
except Exception as e:
print(f"Failed to run task: {e}")
task_queue = multiprocessing.Queue()
num_processes = multiprocessing.cpu_count()
processes = []
for _ in range(num_processes):
p = multiprocessing.Process(target=run_task, args=(task_queue,))
p.start()
processes.append(p)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
text_to_image_pipeline = get_model_or_download("CompVis/stable-diffusion-v1-4", "text_to_image_model", StableDiffusionPipeline.from_pretrained).to(device)
img2img_pipeline = get_model_or_download("CompVis/stable-diffusion-v1-4", "img2img_model", StableDiffusionImg2ImgPipeline.from_pretrained).to(device)
flux_pipeline = get_model_or_download("CompVis/stable-diffusion-flux", "flux_model", FluxPipeline.from_pretrained).to(device)
text_gen_pipeline = transformers_pipeline("text-generation", model="bigcode/starcoder", tokenizer="bigcode/starcoder", device=0)
music_gen = load_object_from_redis("music_gen") or MusicGen.from_pretrained('melody')
meta_llama_pipeline = get_model_or_download("meta/meta-llama-7b", "meta_llama_model", transformers_pipeline)
gen_image_tab = gr.Interface(generate_image, gr.inputs.Textbox(label="Prompt:"), gr.outputs.Image(type="pil"), title="Generate Image")
edit_image_tab = gr.Interface(edit_image_with_prompt, [gr.inputs.Image(type="pil", label="Image:"), gr.inputs.Textbox(label="Prompt:"), gr.inputs.Slider(0.1, 1.0, 0.75, step=0.05, label="Strength:")], gr.outputs.Image(type="pil"), title="Edit Image")
generate_song_tab = gr.Interface(generate_song, [gr.inputs.Textbox(label="Prompt:"), gr.inputs.Slider(5, 60, 10, step=1, label="Duration (s):")], gr.outputs.Audio(type="numpy"), title="Generate Songs")
generate_text_tab = gr.Interface(generate_text, gr.inputs.Textbox(label="Prompt:"), gr.outputs.Textbox(label="Generated Text:"), title="Generate Text")
generate_flux_image_tab = gr.Interface(generate_flux_image, gr.inputs.Textbox(label="Prompt:"), gr.outputs.Image(type="pil"), title="Generate FLUX Images")
model_meta_llama_test_tab = gr.Interface(test_model_meta_llama, gr.inputs.Textbox(label="Test Input:"), gr.outputs.Textbox(label="Model Output:"), title="Test Meta-Llama")
app = gr.TabbedInterface(
[gen_image_tab, edit_image_tab, generate_song_tab, generate_text_tab, generate_flux_image_tab, model_meta_llama_test_tab],
["Generate Image", "Edit Image", "Generate Song", "Generate Text", "Generate FLUX Image", "Test Meta-Llama"]
)
app.launch(share=True)
for _ in range(num_processes):
task_queue.put(None)
for p in processes:
p.join()
|