EwoutLagendijk's picture
Update app.py
e0b9aa2 verified
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, MarianMTModel, MarianTokenizer
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# load speech recognition checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
# load translation model for translating transcribed text to French
translation_model_name = "Helsinki-NLP/opus-mt-en-fr"
translation_model = MarianMTModel.from_pretrained(translation_model_name).to(device)
translation_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
# load text-to-speech checkpoint and speaker embeddings
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
def translate(audio):
# Transcribe speech to text (Whisper ASR)
transcription = asr_pipe(audio)["text"]
# Translate the transcribed text from English to French
translated = translation_model.generate(**translation_tokenizer(transcription, return_tensors="pt", padding=True).to(device))
translated_text = translation_tokenizer.decode(translated[0], skip_special_tokens=True)
return translated_text
def synthesise(text):
inputs = processor(text=text, return_tensors="pt")
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
return speech.cpu()
def speech_to_speech_translation(audio):
translated_text = translate(audio)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech
title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(sources="microphone", type="filepath"),
outputs=gr.Audio(label="Generated French Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(sources="upload", type="filepath"),
outputs=gr.Audio(label="Generated French Speech", type="numpy"),
examples=[["./example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
demo.launch()