File size: 3,273 Bytes
d347764
 
 
 
 
c71ee26
d347764
 
 
b1962e4
d347764
 
b1962e4
 
 
 
 
d347764
 
 
 
 
 
 
 
 
b1962e4
 
 
 
 
 
 
 
d347764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f805e49
 
c6f1d54
 
f805e49
 
 
 
c737803
 
 
d347764
e0b9aa2
 
f805e49
 
d347764
c737803
 
 
e0b9aa2
 
c737803
 
 
 
 
 
3946ba6
c737803
d347764
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset

from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, MarianMTModel, MarianTokenizer

device = "cuda:0" if torch.cuda.is_available() else "cpu"

# load speech recognition checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)

# load translation model for translating transcribed text to French
translation_model_name = "Helsinki-NLP/opus-mt-en-fr"
translation_model = MarianMTModel.from_pretrained(translation_model_name).to(device)
translation_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)

# load text-to-speech checkpoint and speaker embeddings
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)

embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)

def translate(audio):
    # Transcribe speech to text (Whisper ASR)
    transcription = asr_pipe(audio)["text"]

    # Translate the transcribed text from English to French
    translated = translation_model.generate(**translation_tokenizer(transcription, return_tensors="pt", padding=True).to(device))
    translated_text = translation_tokenizer.decode(translated[0], skip_special_tokens=True)
    
    return translated_text


def synthesise(text):
    inputs = processor(text=text, return_tensors="pt")
    speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
    return speech.cpu()


def speech_to_speech_translation(audio):
    translated_text = translate(audio)
    synthesised_speech = synthesise(translated_text)
    synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
    return 16000, synthesised_speech


title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:

![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""

demo = gr.Blocks()

mic_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(sources="microphone", type="filepath"),
    outputs=gr.Audio(label="Generated French Speech", type="numpy"),
    title=title,
    description=description,
)

file_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(sources="upload", type="filepath"),
    outputs=gr.Audio(label="Generated French Speech", type="numpy"),
    examples=[["./example.wav"]],
    title=title,
    description=description,
)

with demo:
    gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])

demo.launch()