EwoutLagendijk commited on
Commit
b1962e4
·
verified ·
1 Parent(s): de757ed

Update app.py

Browse files

Added translating to French

Files changed (1) hide show
  1. app.py +14 -5
app.py CHANGED
@@ -8,22 +8,31 @@ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Proce
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
- # load speech translation checkpoint
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
 
 
 
 
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
  processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
-
17
  model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
-
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
- return outputs["text"]
 
 
 
 
 
 
27
 
28
 
29
  def synthesise(text):
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
+ # load speech recognition checkpoint
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
+ # load translation model for translating transcribed text to French
15
+ translation_model_name = "Helsinki-NLP/opus-mt-en-fr"
16
+ translation_model = MarianMTModel.from_pretrained(translation_model_name).to(device)
17
+ translation_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
18
+
19
  # load text-to-speech checkpoint and speaker embeddings
20
  processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
 
21
  model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
22
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
23
 
24
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
25
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
26
 
 
27
  def translate(audio):
28
+ # Transcribe speech to text (Whisper ASR)
29
+ transcription = asr_pipe(audio)["text"]
30
+
31
+ # Translate the transcribed text from English to French
32
+ translated = translation_model.generate(**translation_tokenizer(transcription, return_tensors="pt", padding=True).to(device))
33
+ translated_text = translation_tokenizer.decode(translated[0], skip_special_tokens=True)
34
+
35
+ return translated_text
36
 
37
 
38
  def synthesise(text):