SummaryProject / src /fine_tune_T5.py
Linggg's picture
model t5 fonctionel
41508f8
raw
history blame
7.16 kB
import torch
import datasets
from datasets import Dataset, DatasetDict
import pandas as pd
from tqdm import tqdm
import re
import os
import nltk
import string
nltk.download('stopwords')
nltk.download('punkt')
import contractions
from transformers import pipeline
import evaluate
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer,AutoConfig
from transformers import Seq2SeqTrainingArguments ,Seq2SeqTrainer
# from transformers import TrainingArguments, Trainer
from transformers import DataCollatorForSeq2Seq
def clean_data(texts):
texts = texts.lower()
texts = contractions.fix(texts)
texts = texts.translate(str.maketrans("", "", string.punctuation))
texts = re.sub(r'\n',' ',texts)
return texts
def datasetmaker (path=str):
data = pd.read_json(path, lines=True)
df = data.drop(['url','archive','title','date','compression','coverage','density','compression_bin','coverage_bin','density_bin'],axis=1)
tqdm.pandas()
df['text'] = df.text.apply(lambda texts : clean_data(texts))
df['summary'] = df.summary.apply(lambda summary : clean_data(summary))
# df['text'] = df['text'].map(str)
# df['summary'] = df['summary'].map(str)
dataset = Dataset.from_dict(df)
return dataset
#voir si le model par hasard esr déjà bien
# test_text = dataset['text'][0]
# pipe = pipeline('summarization',model = model_ckpt)
# pipe_out = pipe(test_text)
# print (pipe_out[0]['summary_text'].replace('.<n>','.\n'))
# print(dataset['summary'][0])
def generate_batch_sized_chunks(list_elements, batch_size):
"""split the dataset into smaller batches that we can process simultaneously
Yield successive batch-sized chunks from list_of_elements."""
for i in range(0, len(list_elements), batch_size):
yield list_elements[i : i + batch_size]
def calculate_metric(dataset, metric, model, tokenizer,
batch_size, device,
column_text='text',
column_summary='summary'):
article_batches = list(str(generate_batch_sized_chunks(dataset[column_text], batch_size)))
target_batches = list(str(generate_batch_sized_chunks(dataset[column_summary], batch_size)))
for article_batch, target_batch in tqdm(
zip(article_batches, target_batches), total=len(article_batches)):
inputs = tokenizer(article_batch, max_length=1024, truncation=True,
padding="max_length", return_tensors="pt")
summaries = model.generate(input_ids=inputs["input_ids"].to(device),
attention_mask=inputs["attention_mask"].to(device),
length_penalty=0.8, num_beams=8, max_length=128)
''' parameter for length penalty ensures that the model does not generate sequences that are too long. '''
# Décode les textes
# renplacer les tokens, ajouter des textes décodés avec les rédéfences vers la métrique.
decoded_summaries = [tokenizer.decode(s, skip_special_tokens=True,
clean_up_tokenization_spaces=True)
for s in summaries]
decoded_summaries = [d.replace("", " ") for d in decoded_summaries]
metric.add_batch(predictions=decoded_summaries, references=target_batch)
#compute et return les ROUGE scores.
results = metric.compute()
rouge_names = ['rouge1','rouge2','rougeL','rougeLsum']
rouge_dict = dict((rn, results[rn] ) for rn in rouge_names )
return pd.DataFrame(rouge_dict, index = ['T5'])
def convert_ex_to_features(example_batch):
input_encodings = tokenizer(example_batch['text'],max_length = 1024,truncation = True)
labels =tokenizer(example_batch['summary'], max_length = 128, truncation = True )
return {
'input_ids' : input_encodings['input_ids'],
'attention_mask': input_encodings['attention_mask'],
'labels': labels['input_ids']
}
if __name__=='__main__':
train_dataset = datasetmaker('data/train_extract.jsonl')
dev_dataset = datasetmaker('data/dev_extract.jsonl')
test_dataset = datasetmaker('data/test_extract.jsonl')
dataset = datasets.DatasetDict({'train':train_dataset,'dev':dev_dataset ,'test':test_dataset})
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
mt5_config = AutoConfig.from_pretrained(
"google/mt5-small",
max_length=128,
length_penalty=0.6,
no_repeat_ngram_size=2,
num_beams=15,
)
model = (AutoModelForSeq2SeqLM
.from_pretrained("google/mt5-small", config=mt5_config)
.to(device))
dataset_pt= dataset.map(convert_ex_to_features,remove_columns=["summary", "text"],batched = True,batch_size=128)
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model,return_tensors="pt")
training_args = Seq2SeqTrainingArguments(
output_dir = "mt5_sum",
log_level = "error",
num_train_epochs = 10,
learning_rate = 5e-4,
# lr_scheduler_type = "linear",
warmup_steps = 0,
optim = "adafactor",
weight_decay = 0.01,
per_device_train_batch_size = 2,
per_device_eval_batch_size = 1,
gradient_accumulation_steps = 16,
evaluation_strategy = "steps",
eval_steps = 100,
predict_with_generate=True,
generation_max_length = 128,
save_steps = 500,
logging_steps = 10,
# push_to_hub = True
)
trainer = Seq2SeqTrainer(
model = model,
args = training_args,
data_collator = data_collator,
# compute_metrics = calculate_metric,
train_dataset=dataset_pt['train'],
eval_dataset=dataset_pt['dev'].select(range(10)),
tokenizer = tokenizer,
)
trainer.train()
rouge_metric = evaluate.load("rouge")
score = calculate_metric(test_dataset, rouge_metric, trainer.model, tokenizer,
batch_size=2, device=device,
column_text='text',
column_summary='summary')
print (score)
#Fine Tuning terminés et à sauvgarder
# save fine-tuned model in local
os.makedirs("./summarization_t5", exist_ok=True)
if hasattr(trainer.model, "module"):
trainer.model.module.save_pretrained("./summarization_t5")
else:
trainer.model.save_pretrained("./summarization_t5")
tokenizer.save_pretrained("./summarization_t5")
# load local model
model = (AutoModelForSeq2SeqLM
.from_pretrained("./summarization_t5")
.to(device))
# mettre en usage : TEST
# gen_kwargs = {"length_penalty": 0.8, "num_beams":8, "max_length": 128}
# sample_text = dataset["test"][0]["text"]
# reference = dataset["test"][0]["summary"]
# pipe = pipeline("summarization", model='./summarization_t5')
# print("Text:")
# print(sample_text)
# print("\nReference Summary:")
# print(reference)
# print("\nModel Summary:")
# print(pipe(sample_text, **gen_kwargs)[0]["summary_text"])