File size: 7,155 Bytes
41508f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import torch
import datasets
from datasets import Dataset, DatasetDict
import pandas as pd
from tqdm import tqdm
import re
import os
import nltk
import string
nltk.download('stopwords')
nltk.download('punkt')
import contractions
from transformers import pipeline

import evaluate
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer,AutoConfig
from transformers import Seq2SeqTrainingArguments ,Seq2SeqTrainer
# from transformers import TrainingArguments, Trainer
from transformers import DataCollatorForSeq2Seq




def clean_data(texts):
    texts = texts.lower()
    texts = contractions.fix(texts)
    texts = texts.translate(str.maketrans("", "", string.punctuation))
    texts = re.sub(r'\n',' ',texts)
    return texts

def datasetmaker (path=str):
    data = pd.read_json(path, lines=True)
    df = data.drop(['url','archive','title','date','compression','coverage','density','compression_bin','coverage_bin','density_bin'],axis=1)
    tqdm.pandas()
    df['text'] = df.text.apply(lambda texts : clean_data(texts))
    df['summary'] = df.summary.apply(lambda summary : clean_data(summary))
    # df['text'] = df['text'].map(str)
    # df['summary'] = df['summary'].map(str)
    dataset = Dataset.from_dict(df)
    return dataset

#voir si le model par hasard esr déjà bien

# test_text = dataset['text'][0]
# pipe = pipeline('summarization',model = model_ckpt)
# pipe_out = pipe(test_text)
# print (pipe_out[0]['summary_text'].replace('.<n>','.\n'))
# print(dataset['summary'][0])

def generate_batch_sized_chunks(list_elements, batch_size):
    """split the dataset into smaller batches that we can process simultaneously
    Yield successive batch-sized chunks from list_of_elements."""
    for i in range(0, len(list_elements), batch_size):
        yield list_elements[i : i + batch_size]

def calculate_metric(dataset, metric, model, tokenizer,
                               batch_size, device,
                               column_text='text',
                               column_summary='summary'):
    article_batches = list(str(generate_batch_sized_chunks(dataset[column_text], batch_size)))
    target_batches = list(str(generate_batch_sized_chunks(dataset[column_summary], batch_size)))

    for article_batch, target_batch in tqdm(
        zip(article_batches, target_batches), total=len(article_batches)):

        inputs = tokenizer(article_batch, max_length=1024,  truncation=True,
                        padding="max_length", return_tensors="pt")

        summaries = model.generate(input_ids=inputs["input_ids"].to(device),
                         attention_mask=inputs["attention_mask"].to(device),
                         length_penalty=0.8, num_beams=8, max_length=128)
        ''' parameter for length penalty ensures that the model does not generate sequences that are too long. '''

        # Décode les textes
        # renplacer les tokens, ajouter des textes décodés avec les rédéfences vers la métrique.
        decoded_summaries = [tokenizer.decode(s, skip_special_tokens=True,
                                clean_up_tokenization_spaces=True)
               for s in summaries]

        decoded_summaries = [d.replace("", " ") for d in decoded_summaries]


        metric.add_batch(predictions=decoded_summaries, references=target_batch)

    #compute et return les ROUGE scores.
    results = metric.compute()
    rouge_names = ['rouge1','rouge2','rougeL','rougeLsum']
    rouge_dict = dict((rn, results[rn] ) for rn in rouge_names )
    return pd.DataFrame(rouge_dict, index = ['T5'])


def convert_ex_to_features(example_batch):
    input_encodings = tokenizer(example_batch['text'],max_length = 1024,truncation = True)

    labels =tokenizer(example_batch['summary'], max_length = 128, truncation = True )

    return {
        'input_ids' : input_encodings['input_ids'],
        'attention_mask': input_encodings['attention_mask'],
        'labels': labels['input_ids']
    }

if __name__=='__main__':

    train_dataset = datasetmaker('data/train_extract.jsonl')

    dev_dataset = datasetmaker('data/dev_extract.jsonl')

    test_dataset = datasetmaker('data/test_extract.jsonl')

    dataset = datasets.DatasetDict({'train':train_dataset,'dev':dev_dataset ,'test':test_dataset})

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
    mt5_config = AutoConfig.from_pretrained(
    "google/mt5-small",
    max_length=128,
    length_penalty=0.6,
    no_repeat_ngram_size=2,
    num_beams=15,
    )
    model = (AutoModelForSeq2SeqLM
            .from_pretrained("google/mt5-small", config=mt5_config)
            .to(device))

    dataset_pt= dataset.map(convert_ex_to_features,remove_columns=["summary", "text"],batched = True,batch_size=128)

    data_collator = DataCollatorForSeq2Seq(tokenizer, model=model,return_tensors="pt")


    training_args = Seq2SeqTrainingArguments(
        output_dir = "mt5_sum",
        log_level = "error",
        num_train_epochs = 10,
        learning_rate = 5e-4,
        #   lr_scheduler_type = "linear",
        warmup_steps = 0,
        optim = "adafactor",
        weight_decay = 0.01,
        per_device_train_batch_size = 2,
        per_device_eval_batch_size = 1,
        gradient_accumulation_steps = 16,
        evaluation_strategy = "steps",
        eval_steps = 100,
        predict_with_generate=True,
        generation_max_length = 128,
        save_steps = 500,
        logging_steps = 10,
        # push_to_hub = True
    )


    trainer = Seq2SeqTrainer(
        model = model,
        args = training_args,
        data_collator = data_collator,
        # compute_metrics = calculate_metric,
        train_dataset=dataset_pt['train'],
        eval_dataset=dataset_pt['dev'].select(range(10)),
        tokenizer = tokenizer,
    )

    trainer.train()
    rouge_metric = evaluate.load("rouge")

    score = calculate_metric(test_dataset, rouge_metric, trainer.model, tokenizer,
                                batch_size=2, device=device,
                                column_text='text',
                                column_summary='summary')
    print (score)


    #Fine Tuning terminés et à sauvgarder



    # save fine-tuned model in local
    os.makedirs("./summarization_t5", exist_ok=True)
    if hasattr(trainer.model, "module"):
        trainer.model.module.save_pretrained("./summarization_t5")
    else:
        trainer.model.save_pretrained("./summarization_t5")
    tokenizer.save_pretrained("./summarization_t5")
    # load local model
    model = (AutoModelForSeq2SeqLM
            .from_pretrained("./summarization_t5")
            .to(device))


    # mettre en usage : TEST


    # gen_kwargs = {"length_penalty": 0.8, "num_beams":8, "max_length": 128}
    # sample_text = dataset["test"][0]["text"]
    # reference = dataset["test"][0]["summary"]
    # pipe = pipeline("summarization", model='./summarization_t5')

    # print("Text:")
    # print(sample_text)
    # print("\nReference Summary:")
    # print(reference)
    # print("\nModel Summary:")
    # print(pipe(sample_text, **gen_kwargs)[0]["summary_text"])