File size: 9,968 Bytes
2b62c4c 1c5b4ad 2b62c4c 1c5b4ad 2b62c4c 99e08c2 a726ea8 99e08c2 eed37e8 2b62c4c 76c8cdc e0181fe 2b62c4c 625e239 da6c970 07a2d86 da6c970 2b62c4c db1ab48 99e08c2 1c5b4ad da6c970 07a2d86 da6c970 db1ab48 99e08c2 1c5b4ad da6c970 07a2d86 da6c970 99e08c2 1c5b4ad da6c970 07a2d86 da6c970 99e08c2 1c5b4ad da6c970 625e239 db1ab48 625e239 1c5b4ad 625e239 2b62c4c da6c970 db1ab48 da6c970 625e239 1c5b4ad da6c970 db1ab48 da6c970 1c5b4ad 625e239 2b62c4c da6c970 a22854d 1c5b4ad a22854d 3cf41e9 2b62c4c 1c5b4ad 2b62c4c 1c5b4ad da6c970 1c5b4ad 2b62c4c 1c5b4ad a22854d 1c5b4ad a22854d 2b62c4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import gradio as gr
from gradio_rangeslider import RangeSlider
import core as core
from style import CSS, LANG_SYMBOLS, T_SYMBOLS, TITLE
def create_model_controls():
with gr.Row():
with gr.Column():
model_types = gr.CheckboxGroup(
label="Select model type",
choices=[
(
f"Pretrained {T_SYMBOLS['pretrained']}",
T_SYMBOLS["pretrained"],
),
(f"Chat {T_SYMBOLS['chat']}", T_SYMBOLS["chat"]),
],
value=list(T_SYMBOLS.values()),
)
with gr.Column():
model_sizes = RangeSlider(minimum=0, maximum=150, value=(7, 8),
label="Select the number of parameters (B)")
return model_types, model_sizes
def create_language_controls(lang_choices):
with gr.Row():
langs_bar = gr.CheckboxGroup(
choices=[(LANG_SYMBOLS.get(l, l), l) for l in lang_choices],
value=lang_choices,
label="Select languages to average over",
elem_id="column-select",
interactive=True,
scale=6,
)
with gr.Column(scale=1):
clear = gr.ClearButton(
langs_bar,
value="Deselect all languages",
size="sm",
scale=1,
)
select = gr.Button(
value="Select all languages",
size="sm",
scale=1,
)
select.click(
lambda: gr.CheckboxGroup(value=lang_choices),
inputs=[],
outputs=langs_bar,
)
return langs_bar
def create_task_controls(tab_id):
with gr.Row():
shown_tasks = gr.CheckboxGroup(
choices=core.get_available_task_groups(core.get_selected_task_type(tab_id), True),
value=core.get_available_task_groups(core.get_selected_task_type(tab_id), True),
label="Select tasks to show",
elem_id="column-select",
interactive=True,
scale=50,
)
clear = gr.ClearButton(
shown_tasks,
value="Deselect all tasks",
size="sm",
scale=1,
)
select = gr.Button(
value="Select all tasks",
size="sm",
scale=1,
)
select.click(
lambda: gr.CheckboxGroup(
value=core.get_available_task_groups(core.get_selected_task_type(tab_id), True)),
inputs=[],
outputs=shown_tasks,
)
return shown_tasks
theme = gr.themes.Default(
primary_hue="blue",
).set(
button_border_width='*block_border_width'
)
demo = gr.Blocks(css=CSS, theme=theme)
with demo:
gr.HTML(TITLE)
gr.Markdown(
"This is a collection of multilingual evaluation results obtained using our fork of the LM-evaluation-harness (https://github.com/OpenGPTX/lm-evaluation-harness), based on V1 of the https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard.\
Note that currently, benchmarks are available in 21 European languages (Irish, Maltese, Croatian missing).",
elem_classes="markdown-text",
)
selected_tab = gr.State(value=0)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem(
"π
LLM accuracy benchmark",
elem_id="llm-benchmark-tab-table-acc",
id=0,
) as acc:
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
label="Search models",
placeholder=" π Separate multiple queries with ';' and press ENTER...",
show_label=True,
elem_id="search-bar",
)
model_types, model_sizes = create_model_controls()
langs_bar = create_language_controls(core.languages_list)
shown_tasks = create_task_controls(0)
leaderboard_table = gr.Dataframe(datatype=["str", "markdown", "number"])
with gr.TabItem(
"π
LLM accuracy benchmark (Zero-Shot)",
elem_id="llm-benchmark-tab-table-acc-zeroshot",
id=3,
) as acc_zero_shot:
with gr.Column():
with gr.Row():
search_bar_zero_shot = gr.Textbox(
label="Search models",
placeholder=" π Separate multiple queries with ';' and press ENTER...",
show_label=True,
elem_id="search-bar",
)
model_types_zero_shot, model_sizes_zero_shot = create_model_controls()
langs_bar_zero_shot = create_language_controls(core.languages_list)
shown_tasks_zero_shot = create_task_controls(1)
leaderboard_table_zero_shot = gr.Dataframe(datatype=["str", "markdown", "number"])
with gr.TabItem(
"π LLM translation benchmark",
elem_id="llm-benchmark-tab-table-misc",
id=1,
) as misc:
with gr.Column():
with gr.Row():
search_bar_misc = gr.Textbox(
label="Search models",
placeholder=" π Separate multiple queries with ';' and press ENTER...",
show_label=True,
elem_id="search-bar",
)
model_types_misc, model_sizes_misc = create_model_controls()
langs_bar_misc = create_language_controls(core.languages_list)
shown_tasks_misc = create_task_controls(3)
leaderboard_table_misc = gr.Dataframe(datatype=["str", "markdown", "number"])
with gr.TabItem(
"π LLM MT-Bench benchmark",
elem_id="llm-benchmark-tab-table-mtbench",
id=2,
) as mtbench:
with gr.Column():
with gr.Row():
search_bar_mtbench = gr.Textbox(
label="Search models",
placeholder=" π Separate multiple queries with ';' and press ENTER...",
show_label=True,
elem_id="search-bar",
)
langs_bar_mtbench = create_language_controls(core.mt_bench_language_list)
leaderboard_table_mtbench = gr.Dataframe(datatype=["str", "markdown", "number"])
for comp, fn in [
(search_bar, "submit"),
(langs_bar, "change"),
(shown_tasks, "change"),
(model_types, "change"),
(model_sizes, "change"),
]:
getattr(comp, fn)(
core.update_df,
[gr.State(value=0), shown_tasks, search_bar, langs_bar, model_sizes, gr.State(value=True), model_types],
leaderboard_table,
)
for comp, fn in [
(search_bar_zero_shot, "submit"),
(model_types_zero_shot, "change"),
(langs_bar_zero_shot, "change"),
(shown_tasks_zero_shot, "change"),
(model_sizes_zero_shot, "change")
]:
getattr(comp, fn)(
core.update_df,
[gr.State(value=1), shown_tasks_zero_shot, search_bar_zero_shot, langs_bar_zero_shot,
model_sizes_zero_shot, gr.State(value=False), model_types_zero_shot],
leaderboard_table_zero_shot,
)
for comp, fn in [
(search_bar_misc, "submit"),
(langs_bar_misc, "change"),
(shown_tasks_misc, "change"),
(model_types_misc, "change"),
(model_sizes_misc, "change"),
]:
getattr(comp, fn)(
core.update_df,
[gr.State(value=2), shown_tasks_misc, search_bar_misc, langs_bar_misc, model_sizes_misc,
gr.State(value=False), model_types_misc],
leaderboard_table_misc,
)
for comp, fn in [
(search_bar_mtbench, "submit"),
(langs_bar_mtbench, "change"),
]:
getattr(comp, fn)(
core.update_df,
[gr.State(value=3),
gr.State(value=core.get_available_task_groups(core.get_selected_task_type(2), False)),
search_bar_mtbench, langs_bar_mtbench, gr.State(value=False)],
leaderboard_table_mtbench,
)
gr.Blocks.load(
block=demo,
fn=core.update_df,
inputs=[gr.State(value=0), shown_tasks, search_bar, langs_bar, model_sizes, gr.State(value=True), model_types],
outputs=leaderboard_table,
)
gr.Blocks.load(
block=demo,
fn=core.update_df,
inputs=[gr.State(value=1), shown_tasks_zero_shot, search_bar_zero_shot, langs_bar_zero_shot,
model_sizes_zero_shot, gr.State(value=False), model_types_zero_shot],
outputs=leaderboard_table_zero_shot,
)
gr.Blocks.load(
block=demo,
fn=core.update_df,
inputs=[gr.State(value=2), shown_tasks_misc, search_bar_misc, langs_bar_misc, model_sizes_misc,
gr.State(value=False), model_types_misc],
outputs=leaderboard_table_misc,
)
# We do not have a checkbox for model_type in mt_bench, hence there is no model_types variable
gr.Blocks.load(
block=demo,
fn=core.update_df,
inputs=[gr.State(value=3),
gr.State(value=core.get_available_task_groups(core.get_selected_task_type(2), False)),
search_bar_mtbench, langs_bar_mtbench, gr.State(value=False)],
outputs=leaderboard_table_mtbench,
)
demo.launch()
|