feat(leaderboard): Added two features
Browse files1. Slider for filtering out the models based on the number of parameters.
2. Model name has embedded links to the respective hf model page.
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import gradio as gr
|
|
| 2 |
|
| 3 |
import core as core
|
| 4 |
from style import CSS, LANG_SYMBOLS, MT_BENCH_LANG_SYMBOLS, T_SYMBOLS, TITLE
|
|
|
|
| 5 |
|
| 6 |
demo = gr.Blocks(css=CSS)
|
| 7 |
with demo:
|
|
@@ -28,17 +29,23 @@ with demo:
|
|
| 28 |
show_label=True,
|
| 29 |
elem_id="search-bar",
|
| 30 |
)
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
with gr.Row():
|
| 44 |
langs_bar = gr.CheckboxGroup(
|
|
@@ -92,7 +99,9 @@ with demo:
|
|
| 92 |
inputs=[],
|
| 93 |
outputs=shown_tasks,
|
| 94 |
)
|
| 95 |
-
|
|
|
|
|
|
|
| 96 |
|
| 97 |
with gr.TabItem(
|
| 98 |
"🏅 LLM accuracy benchmark (Zero-Shot)",
|
|
@@ -107,17 +116,24 @@ with demo:
|
|
| 107 |
show_label=True,
|
| 108 |
elem_id="search-bar",
|
| 109 |
)
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
with gr.Row():
|
| 123 |
langs_bar_zero_shot = gr.CheckboxGroup(
|
|
@@ -171,7 +187,7 @@ with demo:
|
|
| 171 |
inputs=[],
|
| 172 |
outputs=shown_tasks_zero_shot,
|
| 173 |
)
|
| 174 |
-
leaderboard_table_zero_shot = gr.Dataframe()
|
| 175 |
|
| 176 |
with gr.TabItem(
|
| 177 |
"🌐 LLM translation benchmark",
|
|
@@ -187,17 +203,23 @@ with demo:
|
|
| 187 |
elem_id="search-bar",
|
| 188 |
)
|
| 189 |
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
with gr.Row():
|
| 203 |
langs_bar_misc = gr.CheckboxGroup(
|
|
@@ -252,7 +274,7 @@ with demo:
|
|
| 252 |
outputs=shown_tasks_misc,
|
| 253 |
)
|
| 254 |
|
| 255 |
-
leaderboard_table_misc = gr.Dataframe()
|
| 256 |
|
| 257 |
with gr.TabItem(
|
| 258 |
"🌐 LLM MT-Bench benchmark",
|
|
@@ -295,17 +317,19 @@ with demo:
|
|
| 295 |
outputs=langs_bar_mtbench,
|
| 296 |
)
|
| 297 |
|
| 298 |
-
leaderboard_table_mtbench = gr.Dataframe(
|
| 299 |
|
| 300 |
for comp, fn in [
|
| 301 |
(search_bar, "submit"),
|
| 302 |
(langs_bar, "change"),
|
| 303 |
(shown_tasks, "change"),
|
| 304 |
(model_types, "change"),
|
|
|
|
| 305 |
]:
|
| 306 |
getattr(comp, fn)(
|
| 307 |
core.update_df,
|
| 308 |
-
[shown_tasks, search_bar, langs_bar, model_types, gr.State(value=True)],
|
|
|
|
| 309 |
leaderboard_table,
|
| 310 |
)
|
| 311 |
|
|
@@ -314,10 +338,11 @@ with demo:
|
|
| 314 |
(model_types_zero_shot, "change"),
|
| 315 |
(langs_bar_zero_shot, "change"),
|
| 316 |
(shown_tasks_zero_shot, "change"),
|
|
|
|
| 317 |
]:
|
| 318 |
getattr(comp, fn)(
|
| 319 |
core.update_df,
|
| 320 |
-
[shown_tasks_zero_shot, search_bar_zero_shot, langs_bar_zero_shot, model_types_zero_shot, gr.State(value=False)],
|
| 321 |
leaderboard_table_zero_shot,
|
| 322 |
)
|
| 323 |
|
|
@@ -326,10 +351,11 @@ with demo:
|
|
| 326 |
(langs_bar_misc, "change"),
|
| 327 |
(shown_tasks_misc, "change"),
|
| 328 |
(model_types_misc, "change"),
|
|
|
|
| 329 |
]:
|
| 330 |
getattr(comp, fn)(
|
| 331 |
core.update_df,
|
| 332 |
-
[shown_tasks_misc, search_bar_misc, langs_bar_misc, model_types_misc, gr.State(value=False)],
|
| 333 |
leaderboard_table_misc,
|
| 334 |
)
|
| 335 |
|
|
@@ -346,21 +372,22 @@ with demo:
|
|
| 346 |
gr.Blocks.load(
|
| 347 |
block=demo,
|
| 348 |
fn=core.update_df,
|
| 349 |
-
inputs=[shown_tasks, search_bar, langs_bar, model_types, gr.State(value=True)],
|
|
|
|
| 350 |
outputs=leaderboard_table,
|
| 351 |
)
|
| 352 |
|
| 353 |
gr.Blocks.load(
|
| 354 |
block=demo,
|
| 355 |
fn=core.update_df,
|
| 356 |
-
inputs=[shown_tasks_zero_shot, search_bar_zero_shot, langs_bar_zero_shot, model_types_zero_shot, gr.State(value=False)],
|
| 357 |
outputs=leaderboard_table_zero_shot,
|
| 358 |
)
|
| 359 |
|
| 360 |
gr.Blocks.load(
|
| 361 |
block=demo,
|
| 362 |
fn=core.update_df,
|
| 363 |
-
inputs=[shown_tasks_misc, search_bar_misc, langs_bar_misc, model_types_misc, gr.State(value=False)],
|
| 364 |
outputs=leaderboard_table_misc,
|
| 365 |
)
|
| 366 |
|
|
|
|
| 2 |
|
| 3 |
import core as core
|
| 4 |
from style import CSS, LANG_SYMBOLS, MT_BENCH_LANG_SYMBOLS, T_SYMBOLS, TITLE
|
| 5 |
+
from gradio_rangeslider import RangeSlider
|
| 6 |
|
| 7 |
demo = gr.Blocks(css=CSS)
|
| 8 |
with demo:
|
|
|
|
| 29 |
show_label=True,
|
| 30 |
elem_id="search-bar",
|
| 31 |
)
|
| 32 |
+
|
| 33 |
+
with gr.Row():
|
| 34 |
+
with gr.Column():
|
| 35 |
+
model_types = gr.CheckboxGroup(
|
| 36 |
+
label="Select model type",
|
| 37 |
+
choices=[
|
| 38 |
+
(
|
| 39 |
+
f"Pretrained {T_SYMBOLS['pretrained']}",
|
| 40 |
+
T_SYMBOLS["pretrained"],
|
| 41 |
+
),
|
| 42 |
+
(f"Chat {T_SYMBOLS['chat']}", T_SYMBOLS["chat"]),
|
| 43 |
+
],
|
| 44 |
+
value=list(T_SYMBOLS.values()),
|
| 45 |
+
)
|
| 46 |
+
with gr.Column():
|
| 47 |
+
model_sizes = RangeSlider(minimum=0,maximum=150,value=(7, 10),label="Select the number of parameters (B)")
|
| 48 |
+
|
| 49 |
|
| 50 |
with gr.Row():
|
| 51 |
langs_bar = gr.CheckboxGroup(
|
|
|
|
| 99 |
inputs=[],
|
| 100 |
outputs=shown_tasks,
|
| 101 |
)
|
| 102 |
+
# TODO When adding markdown as the data type of the model_name column, the text is getting overflown into the next column.
|
| 103 |
+
# leaderboard_table = gr.Dataframe(datatype=['str', 'markdown'])
|
| 104 |
+
leaderboard_table = gr.Dataframe(datatype=["str", "markdown"], column_widths=[None, "30%"], wrap=False)
|
| 105 |
|
| 106 |
with gr.TabItem(
|
| 107 |
"🏅 LLM accuracy benchmark (Zero-Shot)",
|
|
|
|
| 116 |
show_label=True,
|
| 117 |
elem_id="search-bar",
|
| 118 |
)
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
with gr.Row():
|
| 122 |
+
with gr.Column():
|
| 123 |
+
model_types_zero_shot = gr.CheckboxGroup(
|
| 124 |
+
label="Select model type",
|
| 125 |
+
choices=[
|
| 126 |
+
(
|
| 127 |
+
f"Pretrained {T_SYMBOLS['pretrained']}",
|
| 128 |
+
T_SYMBOLS["pretrained"],
|
| 129 |
+
),
|
| 130 |
+
(f"Chat {T_SYMBOLS['chat']}", T_SYMBOLS["chat"]),
|
| 131 |
+
],
|
| 132 |
+
value=list(T_SYMBOLS.values()),
|
| 133 |
+
)
|
| 134 |
+
with gr.Column():
|
| 135 |
+
model_sizes_zero_shot = RangeSlider(minimum=0, maximum=150, value=(7, 10),
|
| 136 |
+
label="Select the number of parameters (B)")
|
| 137 |
|
| 138 |
with gr.Row():
|
| 139 |
langs_bar_zero_shot = gr.CheckboxGroup(
|
|
|
|
| 187 |
inputs=[],
|
| 188 |
outputs=shown_tasks_zero_shot,
|
| 189 |
)
|
| 190 |
+
leaderboard_table_zero_shot = gr.Dataframe(datatype=["str", "markdown"], column_widths=[None, "30%"], wrap=False)
|
| 191 |
|
| 192 |
with gr.TabItem(
|
| 193 |
"🌐 LLM translation benchmark",
|
|
|
|
| 203 |
elem_id="search-bar",
|
| 204 |
)
|
| 205 |
|
| 206 |
+
with gr.Row():
|
| 207 |
+
with gr.Column():
|
| 208 |
+
model_types_misc = gr.CheckboxGroup(
|
| 209 |
+
label="Select model type",
|
| 210 |
+
choices=[
|
| 211 |
+
(
|
| 212 |
+
f"Pretrained {T_SYMBOLS['pretrained']}",
|
| 213 |
+
T_SYMBOLS["pretrained"],
|
| 214 |
+
),
|
| 215 |
+
(f"Chat {T_SYMBOLS['chat']}", T_SYMBOLS["chat"]),
|
| 216 |
+
],
|
| 217 |
+
value=list(T_SYMBOLS.values()),
|
| 218 |
+
)
|
| 219 |
+
with gr.Column():
|
| 220 |
+
model_sizes_misc = RangeSlider(minimum=0, maximum=150, value=(7, 10),
|
| 221 |
+
label="Select the number of parameters (B)")
|
| 222 |
+
|
| 223 |
|
| 224 |
with gr.Row():
|
| 225 |
langs_bar_misc = gr.CheckboxGroup(
|
|
|
|
| 274 |
outputs=shown_tasks_misc,
|
| 275 |
)
|
| 276 |
|
| 277 |
+
leaderboard_table_misc = gr.Dataframe(datatype=["str", "markdown"], column_widths=[None, "30%"], wrap=False)
|
| 278 |
|
| 279 |
with gr.TabItem(
|
| 280 |
"🌐 LLM MT-Bench benchmark",
|
|
|
|
| 317 |
outputs=langs_bar_mtbench,
|
| 318 |
)
|
| 319 |
|
| 320 |
+
leaderboard_table_mtbench = gr.Dataframe(datatype=["str", "markdown"], column_widths=[None, "60%"], wrap=False)
|
| 321 |
|
| 322 |
for comp, fn in [
|
| 323 |
(search_bar, "submit"),
|
| 324 |
(langs_bar, "change"),
|
| 325 |
(shown_tasks, "change"),
|
| 326 |
(model_types, "change"),
|
| 327 |
+
(model_sizes, "change"),
|
| 328 |
]:
|
| 329 |
getattr(comp, fn)(
|
| 330 |
core.update_df,
|
| 331 |
+
[shown_tasks, search_bar, langs_bar, model_types, model_sizes, gr.State(value=True)],
|
| 332 |
+
# [shown_tasks, search_bar, langs_bar, model_types, gr.State(value=True)],
|
| 333 |
leaderboard_table,
|
| 334 |
)
|
| 335 |
|
|
|
|
| 338 |
(model_types_zero_shot, "change"),
|
| 339 |
(langs_bar_zero_shot, "change"),
|
| 340 |
(shown_tasks_zero_shot, "change"),
|
| 341 |
+
(model_sizes_zero_shot, "change")
|
| 342 |
]:
|
| 343 |
getattr(comp, fn)(
|
| 344 |
core.update_df,
|
| 345 |
+
[shown_tasks_zero_shot, search_bar_zero_shot, langs_bar_zero_shot, model_types_zero_shot, model_sizes_zero_shot, gr.State(value=False)],
|
| 346 |
leaderboard_table_zero_shot,
|
| 347 |
)
|
| 348 |
|
|
|
|
| 351 |
(langs_bar_misc, "change"),
|
| 352 |
(shown_tasks_misc, "change"),
|
| 353 |
(model_types_misc, "change"),
|
| 354 |
+
(model_sizes_misc, "change"),
|
| 355 |
]:
|
| 356 |
getattr(comp, fn)(
|
| 357 |
core.update_df,
|
| 358 |
+
[shown_tasks_misc, search_bar_misc, langs_bar_misc, model_types_misc, model_sizes_misc, gr.State(value=False)],
|
| 359 |
leaderboard_table_misc,
|
| 360 |
)
|
| 361 |
|
|
|
|
| 372 |
gr.Blocks.load(
|
| 373 |
block=demo,
|
| 374 |
fn=core.update_df,
|
| 375 |
+
inputs=[shown_tasks, search_bar, langs_bar, model_types, model_sizes, gr.State(value=True)],
|
| 376 |
+
# inputs=[shown_tasks, search_bar, langs_bar, model_types, gr.State(value=True)],
|
| 377 |
outputs=leaderboard_table,
|
| 378 |
)
|
| 379 |
|
| 380 |
gr.Blocks.load(
|
| 381 |
block=demo,
|
| 382 |
fn=core.update_df,
|
| 383 |
+
inputs=[shown_tasks_zero_shot, search_bar_zero_shot, langs_bar_zero_shot, model_types_zero_shot, model_sizes_zero_shot, gr.State(value=False)],
|
| 384 |
outputs=leaderboard_table_zero_shot,
|
| 385 |
)
|
| 386 |
|
| 387 |
gr.Blocks.load(
|
| 388 |
block=demo,
|
| 389 |
fn=core.update_df,
|
| 390 |
+
inputs=[shown_tasks_misc, search_bar_misc, langs_bar_misc, model_types_misc, model_sizes_misc, gr.State(value=False)],
|
| 391 |
outputs=leaderboard_table_misc,
|
| 392 |
)
|
| 393 |
|
core.py
CHANGED
|
@@ -4,6 +4,7 @@ import os
|
|
| 4 |
import numpy as np
|
| 5 |
import pandas as pd
|
| 6 |
from datasets import load_dataset
|
|
|
|
| 7 |
|
| 8 |
import style
|
| 9 |
|
|
@@ -27,7 +28,8 @@ def init():
|
|
| 27 |
task_groups_shots_df = hidden_df[hidden_df["Few_Shot"] == True][["Task_Group", "Number_Shots"]].drop_duplicates()
|
| 28 |
task_groups_shots_dict = task_groups_shots_df.set_index("Task_Group")["Number_Shots"].to_dict()
|
| 29 |
languages_list = hidden_df["Language"].drop_duplicates().str.upper().tolist()
|
| 30 |
-
mt_bench_language_list = hidden_df[hidden_df["Task_Group"] == "MTBENCH"][
|
|
|
|
| 31 |
model_type_df = hidden_df[["Model_Name", "Model_Type"]].drop_duplicates()
|
| 32 |
model_type_dict = model_type_df.set_index("Model_Name")["Model_Type"].to_dict()
|
| 33 |
|
|
@@ -41,8 +43,19 @@ def init():
|
|
| 41 |
hidden_df["Type"] = hidden_df["Model_Name"].apply(lambda x: style.T_SYMBOLS[model_type_dict[x]])
|
| 42 |
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
def sort_cols(df: pd.DataFrame, fewshot: bool = False) -> pd.DataFrame:
|
| 45 |
task_cols = get_task_columns(df)
|
|
|
|
|
|
|
| 46 |
return df.reindex(["Type", "Model_Name", "Average"] + sorted(task_cols), axis=1)
|
| 47 |
|
| 48 |
|
|
@@ -97,12 +110,13 @@ def select_shots(df: pd.DataFrame, fewshot: bool = False):
|
|
| 97 |
|
| 98 |
|
| 99 |
def update_df(
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
|
|
|
| 106 |
) -> pd.DataFrame:
|
| 107 |
"""Return a filtered dataframe according to selected models, tasks and
|
| 108 |
languages. The format flag controls whether the output dataframe should
|
|
@@ -119,6 +133,11 @@ def update_df(
|
|
| 119 |
df = search_model(df, model_query)
|
| 120 |
df = filter_type(df, model_types)
|
| 121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
if format:
|
| 123 |
return sort_cols(df, fewshot).style.format(precision=2, decimal=".", na_rep="N/A")
|
| 124 |
else:
|
|
@@ -132,7 +151,8 @@ def get_selected_task_type(task_type_id):
|
|
| 132 |
|
| 133 |
|
| 134 |
def get_available_task_groups(selected_task_type, fewshot):
|
| 135 |
-
task_groups = [task_group_name for task_group_name, task_type in task_group_type_dict.items() if
|
|
|
|
| 136 |
|
| 137 |
if fewshot:
|
| 138 |
available_tasks = [c for c in task_groups if c not in ZERO_SHOT_ONLY]
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
import pandas as pd
|
| 6 |
from datasets import load_dataset
|
| 7 |
+
from utils import model_hf_look_up_table_filter
|
| 8 |
|
| 9 |
import style
|
| 10 |
|
|
|
|
| 28 |
task_groups_shots_df = hidden_df[hidden_df["Few_Shot"] == True][["Task_Group", "Number_Shots"]].drop_duplicates()
|
| 29 |
task_groups_shots_dict = task_groups_shots_df.set_index("Task_Group")["Number_Shots"].to_dict()
|
| 30 |
languages_list = hidden_df["Language"].drop_duplicates().str.upper().tolist()
|
| 31 |
+
mt_bench_language_list = hidden_df[hidden_df["Task_Group"] == "MTBENCH"][
|
| 32 |
+
"Language"].drop_duplicates().str.upper().tolist()
|
| 33 |
model_type_df = hidden_df[["Model_Name", "Model_Type"]].drop_duplicates()
|
| 34 |
model_type_dict = model_type_df.set_index("Model_Name")["Model_Type"].to_dict()
|
| 35 |
|
|
|
|
| 43 |
hidden_df["Type"] = hidden_df["Model_Name"].apply(lambda x: style.T_SYMBOLS[model_type_dict[x]])
|
| 44 |
|
| 45 |
|
| 46 |
+
def model_hyperlink(link, model_name):
|
| 47 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;"> {model_name} </a>'
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def make_clickable_model(model_name):
|
| 51 |
+
link = f"https://huggingface.co/" + model_hf_look_up_table_filter[model_name]['link']
|
| 52 |
+
return model_hyperlink(link, model_name)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
def sort_cols(df: pd.DataFrame, fewshot: bool = False) -> pd.DataFrame:
|
| 56 |
task_cols = get_task_columns(df)
|
| 57 |
+
df['Model_Name'] = df['Model_Name'].apply(
|
| 58 |
+
lambda x: make_clickable_model(x) if x in model_hf_look_up_table_filter else x)
|
| 59 |
return df.reindex(["Type", "Model_Name", "Average"] + sorted(task_cols), axis=1)
|
| 60 |
|
| 61 |
|
|
|
|
| 110 |
|
| 111 |
|
| 112 |
def update_df(
|
| 113 |
+
tasks: list[str],
|
| 114 |
+
model_query: str,
|
| 115 |
+
langs: list[str],
|
| 116 |
+
model_types: list[str],
|
| 117 |
+
model_sizes: list[str],
|
| 118 |
+
fewshot: bool = False,
|
| 119 |
+
format: bool = True,
|
| 120 |
) -> pd.DataFrame:
|
| 121 |
"""Return a filtered dataframe according to selected models, tasks and
|
| 122 |
languages. The format flag controls whether the output dataframe should
|
|
|
|
| 133 |
df = search_model(df, model_query)
|
| 134 |
df = filter_type(df, model_types)
|
| 135 |
|
| 136 |
+
if model_sizes:
|
| 137 |
+
result = [key for key, value in model_hf_look_up_table_filter.items() if
|
| 138 |
+
(value.get("model_size") >= model_sizes[0] and value.get("model_size") <= model_sizes[1])]
|
| 139 |
+
df = df[df['Model_Name'].isin(result)]
|
| 140 |
+
|
| 141 |
if format:
|
| 142 |
return sort_cols(df, fewshot).style.format(precision=2, decimal=".", na_rep="N/A")
|
| 143 |
else:
|
|
|
|
| 151 |
|
| 152 |
|
| 153 |
def get_available_task_groups(selected_task_type, fewshot):
|
| 154 |
+
task_groups = [task_group_name for task_group_name, task_type in task_group_type_dict.items() if
|
| 155 |
+
task_type == selected_task_type]
|
| 156 |
|
| 157 |
if fewshot:
|
| 158 |
available_tasks = [c for c in task_groups if c not in ZERO_SHOT_ONLY]
|
utils.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_hf_look_up_table_filter = {
|
| 2 |
+
"Aya-23-8B": {
|
| 3 |
+
"link": "CohereForAI/aya-23-8B",
|
| 4 |
+
"model_size": 8
|
| 5 |
+
},
|
| 6 |
+
"Bloom-7b1": {
|
| 7 |
+
"link": "bigscience/bloom-7b1",
|
| 8 |
+
"model_size": 7,
|
| 9 |
+
},
|
| 10 |
+
"Bloomz-7b1": {
|
| 11 |
+
"link": "bigscience/bloomz-7b1",
|
| 12 |
+
"model_size": 7,
|
| 13 |
+
},
|
| 14 |
+
"Meta-Llama-2-7B": {
|
| 15 |
+
"link": "meta-llama/Llama-2-7b",
|
| 16 |
+
"model_size": 7,
|
| 17 |
+
},
|
| 18 |
+
"Gemma-7b": {
|
| 19 |
+
"link": "google/gemma-7b",
|
| 20 |
+
"model_size": 7,
|
| 21 |
+
},
|
| 22 |
+
"Gemma-1.1-7b-Instruct": {
|
| 23 |
+
"link": "google/gemma-1.1-7b-it",
|
| 24 |
+
"model_size": 7,
|
| 25 |
+
},
|
| 26 |
+
"Meta-Llama-3-8B": {
|
| 27 |
+
"link": "meta-llama/Meta-Llama-3-8B",
|
| 28 |
+
"model_size": 8
|
| 29 |
+
},
|
| 30 |
+
"Meta-Llama-3-8B-Instruct": {
|
| 31 |
+
"link": "meta-llama/Meta-Llama-3-8B-Instruct",
|
| 32 |
+
"model_size": 8
|
| 33 |
+
},
|
| 34 |
+
"Mistral-7B-Instruct-v0.3": {
|
| 35 |
+
"link": "mistralai/Mistral-7B-Instruct-v0.3",
|
| 36 |
+
"model_size": 7
|
| 37 |
+
},
|
| 38 |
+
"Mistral-7B-Instruct-v0.1": {
|
| 39 |
+
"link": "mistralai/Mistral-7B-Instruct-v0.1",
|
| 40 |
+
"model_size": 7
|
| 41 |
+
},
|
| 42 |
+
"Mistral-7B-Instruct-v0.2": {
|
| 43 |
+
"link": "mistralai/Mistral-7B-Instruct-v0.2",
|
| 44 |
+
"model_size": 7
|
| 45 |
+
},
|
| 46 |
+
"Mistral-7B-v0.1": {
|
| 47 |
+
"link": "mistralai/Mistral-7B-v0.1",
|
| 48 |
+
"model_size": 7
|
| 49 |
+
},
|
| 50 |
+
"Mistral-7B-v0.3": {
|
| 51 |
+
"link": "mistralai/Mistral-7B-v0.3",
|
| 52 |
+
"model_size": 7
|
| 53 |
+
},
|
| 54 |
+
"Occiglot-7b-eu5": {
|
| 55 |
+
"link": "occiglot/occiglot-7b-eu5",
|
| 56 |
+
"model_size": 7
|
| 57 |
+
},
|
| 58 |
+
"Occiglot-7b-eu5-Instruct": {
|
| 59 |
+
"link": "occiglot/occiglot-7b-eu5-instruct",
|
| 60 |
+
"model_size": 7
|
| 61 |
+
},
|
| 62 |
+
"Phi-3-mini-4k-Instruct": {
|
| 63 |
+
"link": "microsoft/Phi-3-mini-4k-instruct",
|
| 64 |
+
"model_size": 3.8
|
| 65 |
+
},
|
| 66 |
+
"Qwen2-7B": {
|
| 67 |
+
"link": "Qwen/Qwen2-7B-Instruct",
|
| 68 |
+
"model_size": 7
|
| 69 |
+
},
|
| 70 |
+
"Qwen2-7B-Instruct": {
|
| 71 |
+
"link": "Qwen/Qwen2-7B-Instruct",
|
| 72 |
+
"model_size": 7
|
| 73 |
+
},
|
| 74 |
+
"7B_24EU_2.5T_bactrianx17_bb_ckp1": {
|
| 75 |
+
"link": "",
|
| 76 |
+
"model_size": 7
|
| 77 |
+
},
|
| 78 |
+
"7B_24EU_2.5T_bactrianx5_bb_ckp1": {
|
| 79 |
+
"link": "",
|
| 80 |
+
"model_size": 7
|
| 81 |
+
},
|
| 82 |
+
"7B_24EU_2.5T_honey_ckp2701": {
|
| 83 |
+
"link": "",
|
| 84 |
+
"model_size": 7
|
| 85 |
+
},
|
| 86 |
+
"7B_24EU_2T_bactrianx17_bb_ckp2": {
|
| 87 |
+
"link": "",
|
| 88 |
+
"model_size": 7
|
| 89 |
+
},
|
| 90 |
+
"7B_24EU_2T_bactrianx5_bb_ckp2": {
|
| 91 |
+
"link": "",
|
| 92 |
+
"model_size": 7
|
| 93 |
+
},
|
| 94 |
+
"7B_24EU_2.86T_EP5_iter_0681300": {
|
| 95 |
+
"link": "",
|
| 96 |
+
"model_size": 7
|
| 97 |
+
},
|
| 98 |
+
"7B_24EU_2.86T_iter_0602100": {
|
| 99 |
+
"link": "",
|
| 100 |
+
"model_size": 7
|
| 101 |
+
},
|
| 102 |
+
"7B_24EU_1.45T_bactrianx17_ckp1": {
|
| 103 |
+
"link": "",
|
| 104 |
+
"model_size": 7
|
| 105 |
+
},
|
| 106 |
+
"7B_24EU_1.45T_bactrianx17_bb_ckp2": {
|
| 107 |
+
"link": "",
|
| 108 |
+
"model_size": 7
|
| 109 |
+
},
|
| 110 |
+
"7B_24EU_1.45T_bactrianx5_ckp1": {
|
| 111 |
+
"link": "",
|
| 112 |
+
"model_size": 7
|
| 113 |
+
},
|
| 114 |
+
"7B_24EU_1.65T_bactrianx17_ckp1": {
|
| 115 |
+
"link": "",
|
| 116 |
+
"model_size": 7
|
| 117 |
+
},
|
| 118 |
+
"7B_24EU_1.65T_bactrianx17_bb_ckp1": {
|
| 119 |
+
"link": "",
|
| 120 |
+
"model_size": 7
|
| 121 |
+
},
|
| 122 |
+
"7B_24EU_1.65T_bactrianx5_ckp1": {
|
| 123 |
+
"link": "",
|
| 124 |
+
"model_size": 7
|
| 125 |
+
},
|
| 126 |
+
"7B_EN_200B_iter_0047683": {
|
| 127 |
+
"link": "",
|
| 128 |
+
"model_size": 7
|
| 129 |
+
},
|
| 130 |
+
"7B_EQUAL_200B_iter_0046950": {
|
| 131 |
+
"link": "",
|
| 132 |
+
"model_size": 7
|
| 133 |
+
},
|
| 134 |
+
"7B_EU24_1.1T_iter_0236250": {
|
| 135 |
+
"link": "",
|
| 136 |
+
"model_size": 7
|
| 137 |
+
},
|
| 138 |
+
"7B_EU24_1.45T_iter_0346050": {
|
| 139 |
+
"link": "",
|
| 140 |
+
"model_size": 7
|
| 141 |
+
},
|
| 142 |
+
"7B_EU24_1.65T_iter_0393075": {
|
| 143 |
+
"link": "",
|
| 144 |
+
"model_size": 7
|
| 145 |
+
},
|
| 146 |
+
"7B_EU24_2.5T_DE_213B": {
|
| 147 |
+
"link": "",
|
| 148 |
+
"model_size": 7
|
| 149 |
+
},
|
| 150 |
+
"7B_EU24_2.5T_DE_262B": {
|
| 151 |
+
"link": "",
|
| 152 |
+
"model_size": 7
|
| 153 |
+
},
|
| 154 |
+
"7B_EU24_2.5T_iter_0602100": {
|
| 155 |
+
"link": "",
|
| 156 |
+
"model_size": 7
|
| 157 |
+
},
|
| 158 |
+
"7B_EU24_2T_iter_0477675": {
|
| 159 |
+
"link": "",
|
| 160 |
+
"model_size": 7
|
| 161 |
+
},
|
| 162 |
+
"7B_EU24_2T_iter_0477900": {
|
| 163 |
+
"link": "",
|
| 164 |
+
"model_size": 7
|
| 165 |
+
},
|
| 166 |
+
"7B_EU24_2T_iter_0478125": {
|
| 167 |
+
"link": "",
|
| 168 |
+
"model_size": 7
|
| 169 |
+
},
|
| 170 |
+
"7B_EU24_3T_oscar_iter_0715255": {
|
| 171 |
+
"link": "",
|
| 172 |
+
"model_size": 7
|
| 173 |
+
},
|
| 174 |
+
"7B_EU24_3T_fw_iter_0715255": {
|
| 175 |
+
"link": "",
|
| 176 |
+
"model_size": 7
|
| 177 |
+
},
|
| 178 |
+
"7B_EU24_fw_3T_honey_ckp1350": {
|
| 179 |
+
"link": "",
|
| 180 |
+
"model_size": 7
|
| 181 |
+
},
|
| 182 |
+
"7B_EU24_fw_3.1T_iter_0025875": {
|
| 183 |
+
"link": "",
|
| 184 |
+
"model_size": 7
|
| 185 |
+
},
|
| 186 |
+
"7B_EU24_1.1T_bactrianx_ckp2": {
|
| 187 |
+
"link": "",
|
| 188 |
+
"model_size": 7
|
| 189 |
+
},
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
}
|