Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import requests | |
import time | |
from collections import defaultdict | |
# Set page layout to wide mode and set page title | |
st.set_page_config(layout="wide", page_title="影城效率与内容分析工具") | |
# --- Efficiency Analysis Functions --- | |
def clean_movie_title(title): | |
if not isinstance(title, str): | |
return title | |
return title.split(' ', 1)[0] | |
def style_efficiency(row): | |
green = 'background-color: #E6F5E6;' # Light Green | |
red = 'background-color: #FFE5E5;' # Light Red | |
default = '' | |
styles = [default] * len(row) | |
seat_efficiency = row.get('座次效率', 0) | |
session_efficiency = row.get('场次效率', 0) | |
if seat_efficiency > 1.5 or session_efficiency > 1.5: | |
styles = [green] * len(row) | |
elif seat_efficiency < 0.5 or session_efficiency < 0.5: | |
styles = [red] * len(row) | |
return styles | |
def process_and_analyze_data(df): | |
if df.empty: | |
return pd.DataFrame() | |
analysis_df = df.groupby('影片名称_清理后').agg( | |
座位数=('座位数', 'sum'), | |
场次=('影片名称_清理后', 'size'), | |
票房=('总收入', 'sum'), | |
人次=('总人次', 'sum') | |
).reset_index() | |
analysis_df.rename(columns={'影片名称_清理后': '影片'}, inplace=True) | |
analysis_df = analysis_df.sort_values(by='票房', ascending=False).reset_index(drop=True) | |
total_seats = analysis_df['座位数'].sum() | |
total_sessions = analysis_df['场次'].sum() | |
total_revenue = analysis_df['票房'].sum() | |
analysis_df['均价'] = np.divide(analysis_df['票房'], analysis_df['人次']).fillna(0) | |
analysis_df['座次比'] = np.divide(analysis_df['座位数'], total_seats).fillna(0) | |
analysis_df['场次比'] = np.divide(analysis_df['场次'], total_sessions).fillna(0) | |
analysis_df['票房比'] = np.divide(analysis_df['票房'], total_revenue).fillna(0) | |
analysis_df['座次效率'] = np.divide(analysis_df['票房比'], analysis_df['座次比']).fillna(0) | |
analysis_df['场次效率'] = np.divide(analysis_df['票房比'], analysis_df['场次比']).fillna(0) | |
final_columns = ['影片', '座位数', '场次', '票房', '人次', '均价', '座次比', '场次比', '票房比', '座次效率', | |
'场次效率'] | |
analysis_df = analysis_df[final_columns] | |
return analysis_df | |
# --- New Feature: Server Movie Content Inquiry --- | |
def fetch_and_process_server_movies(priority_movie_titles=None): | |
if priority_movie_titles is None: | |
priority_movie_titles = [] | |
# 1. Get Token | |
token_headers = { | |
'Host': 'oa.hengdianfilm.com:7080', 'Content-Type': 'application/json', | |
'Origin': 'http://115.239.253.233:7080', 'Connection': 'keep-alive', | |
'Accept': 'application/json, text/javascript, */*; q=0.01', | |
'User-Agent': 'Mozilla/5.0 (iPhone; CPU iPhone OS 18_5_0 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) CriOS/138.0.7204.156 Mobile/15E148 Safari/604.1', | |
'Accept-Language': 'zh-CN,zh-Hans;q=0.9', | |
} | |
token_json_data = {'appId': 'hd', 'appSecret': 'ad761f8578cc6170', 'timeStamp': int(time.time() * 1000)} | |
token_url = 'http://oa.hengdianfilm.com:7080/cinema-api/admin/generateToken?token=hd&murl=?token=hd&murl=ticket=-1495916529737643774' | |
response = requests.post(token_url, headers=token_headers, json=token_json_data, timeout=10) | |
response.raise_for_status() | |
token_data = response.json() | |
if token_data.get('error_code') != '0000': | |
raise Exception(f"获取Token失败: {token_data.get('error_desc')}") | |
auth_token = token_data['param'] | |
# 2. Fetch movie list (with pagination and delay) | |
all_movies = [] | |
page_index = 1 | |
while True: | |
list_headers = { | |
'Accept': 'application/json, text/javascript, */*; q=0.01', | |
'Content-Type': 'application/json; charset=UTF-8', | |
'Origin': 'http://115.239.253.233:7080', 'Proxy-Connection': 'keep-alive', 'Token': auth_token, | |
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/138.0.0.0 Safari/537.36', | |
'X-SESSIONID': 'PQ0J3K85GJEDVYIGZE1KEG1K80USDAP4', | |
} | |
list_params = {'token': 'hd', 'murl': 'ContentMovie'} | |
list_json_data = {'THEATER_ID': 38205954, 'SOURCE': 'SERVER', 'ASSERT_TYPE': 2, 'PAGE_CAPACITY': 20, | |
'PAGE_INDEX': page_index} | |
list_url = 'http://oa.hengdianfilm.com:7080/cinema-api/cinema/server/dcp/list' | |
response = requests.post(list_url, params=list_params, headers=list_headers, json=list_json_data, verify=False) | |
response.raise_for_status() | |
movie_data = response.json() | |
if movie_data.get("RSPCD") != "000000": | |
raise Exception(f"获取影片列表失败: {movie_data.get('RSPMSG')}") | |
body = movie_data.get("BODY", {}) | |
movies_on_page = body.get("LIST", []) | |
if not movies_on_page: break | |
all_movies.extend(movies_on_page) | |
if len(all_movies) >= body.get("COUNT", 0): break | |
page_index += 1 | |
time.sleep(1) # Add 1-second delay between requests | |
# 3. Process data into a central, detailed structure | |
movie_details = {} | |
for movie in all_movies: | |
content_name = movie.get('CONTENT_NAME') | |
if not content_name: continue | |
movie_details[content_name] = { | |
'assert_name': movie.get('ASSERT_NAME'), | |
'halls': sorted([h.get('HALL_NAME') for h in movie.get('HALL_INFO', [])]), | |
'play_time': movie.get('PLAY_TIME') | |
} | |
# 4. Prepare data for the two display views | |
by_hall = defaultdict(list) | |
for content_name, details in movie_details.items(): | |
for hall_name in details['halls']: | |
by_hall[hall_name].append({'content_name': content_name, 'details': details}) | |
for hall_name in by_hall: | |
by_hall[hall_name].sort(key=lambda item: ( | |
item['details']['assert_name'] is None or item['details']['assert_name'] == '', | |
item['details']['assert_name'] or item['content_name'] | |
)) | |
view2_list = [] | |
for content_name, details in movie_details.items(): | |
if details.get('assert_name'): | |
view2_list.append({ | |
'assert_name': details['assert_name'], | |
'content_name': content_name, | |
'halls': details['halls'], | |
'play_time': details['play_time'] | |
}) | |
priority_list = [item for item in view2_list if | |
any(p_title in item['assert_name'] for p_title in priority_movie_titles)] | |
other_list_items = [item for item in view2_list if item not in priority_list] | |
priority_list.sort(key=lambda x: x['assert_name']) | |
other_list_items.sort(key=lambda x: x['assert_name']) | |
final_sorted_list = priority_list + other_list_items | |
return dict(sorted(by_hall.items())), final_sorted_list | |
def get_circled_number(hall_name): | |
mapping = {'1': '①', '2': '②', '3': '③', '4': '④', '5': '⑤', '6': '⑥', '7': '⑦', '8': '⑧', '9': '⑨'} | |
num_str = ''.join(filter(str.isdigit, hall_name)) | |
return mapping.get(num_str, '') | |
def format_play_time(time_str): | |
if not time_str or not isinstance(time_str, str): return None | |
try: | |
parts = time_str.split(':'); | |
hours = int(parts[0]); | |
minutes = int(parts[1]) | |
return hours * 60 + minutes | |
except (ValueError, IndexError): | |
return None | |
# --- NEW Helper function to add TMS location column --- | |
def add_tms_locations_to_analysis(analysis_df, tms_movie_list): | |
locations = [] | |
for index, row in analysis_df.iterrows(): | |
movie_title = row['影片'] | |
found_versions = [] | |
for tms_movie in tms_movie_list: | |
if movie_title in tms_movie['assert_name']: | |
# Extract version name by removing the base title | |
version_name = tms_movie['assert_name'].replace(movie_title, '').strip() | |
circled_halls = " ".join(sorted([get_circled_number(h) for h in tms_movie['halls']])) | |
found_versions.append(f"{version_name}:{circled_halls}") | |
locations.append('|'.join(found_versions)) | |
analysis_df['影片所在影厅位置'] = locations | |
return analysis_df | |
# --- Streamlit Main UI --- | |
st.title('影城排片效率与内容分析工具') | |
st.write("上传 `影片映出日累计报表.xlsx` 进行效率分析,或点击下方按钮查询 TMS 服务器影片内容。") | |
uploaded_file = st.file_uploader("请在此处上传 Excel 文件", type=['xlsx', 'xls', 'csv']) | |
# NEW: Checkbox for the new feature | |
query_tms_for_location = st.checkbox("查询 TMS 找影片所在影厅") | |
if uploaded_file is not None: | |
try: | |
df = pd.read_excel(uploaded_file, skiprows=3, header=None) | |
df.rename(columns={0: '影片名称', 2: '放映时间', 5: '总人次', 6: '总收入', 7: '座位数'}, inplace=True) | |
required_cols = ['影片名称', '放映时间', '座位数', '总收入', '总人次'] | |
df = df[required_cols] | |
df.dropna(subset=['影片名称', '放映时间'], inplace=True) | |
for col in ['座位数', '总收入', '总人次']: | |
df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0) | |
df['放映时间'] = pd.to_datetime(df['放映时间'], format='%H:%M:%S', errors='coerce').dt.time | |
df.dropna(subset=['放映时间'], inplace=True) | |
df['影片名称_清理后'] = df['影片名称'].apply(clean_movie_title) | |
st.toast("文件上传成功,效率分析已生成!", icon="🎉") | |
format_config = {'座位数': '{:,.0f}', '场次': '{:,.0f}', '人次': '{:,.0f}', '票房': '{:,.2f}', '均价': '{:.2f}', | |
'座次比': '{:.2%}', '场次比': '{:.2%}', '票房比': '{:.2%}', '座次效率': '{:.2f}', | |
'场次效率': '{:.2f}'} | |
full_day_analysis = process_and_analyze_data(df.copy()) | |
prime_time_analysis = process_and_analyze_data( | |
df[df['放映时间'].between(pd.to_datetime('14:00:00').time(), pd.to_datetime('21:00:00').time())].copy()) | |
# --- NEW LOGIC: If checkbox is ticked, fetch data and modify dataframes --- | |
if query_tms_for_location: | |
with st.spinner("正在关联查询 TMS 服务器..."): | |
_, tms_movie_list = fetch_and_process_server_movies() | |
full_day_analysis = add_tms_locations_to_analysis(full_day_analysis, tms_movie_list) | |
prime_time_analysis = add_tms_locations_to_analysis(prime_time_analysis, tms_movie_list) | |
st.toast("TMS 影片位置关联成功!", icon="🔗") | |
st.markdown("### 全天排片效率分析") | |
if not full_day_analysis.empty: | |
st.dataframe( | |
full_day_analysis.style.format(format_config), | |
use_container_width=True, hide_index=True) | |
st.markdown("#### 黄金时段排片效率分析 (14:00-21:00)") | |
if not prime_time_analysis.empty: | |
st.dataframe( | |
prime_time_analysis.style.format(format_config), | |
use_container_width=True, hide_index=True) | |
if not full_day_analysis.empty: | |
st.markdown("##### 复制当日排片列表") | |
movie_titles = full_day_analysis['影片'].tolist() | |
formatted_titles = ''.join([f'《{title}》' for title in movie_titles]) | |
st.code(formatted_titles, language='text') | |
except Exception as e: | |
st.error(f"处理文件时出错: {e}") | |
st.divider() | |
st.markdown("### TMS 服务器影片内容查询") | |
if st.button('点击查询 TMS 服务器'): | |
with st.spinner("正在从 TMS 服务器获取数据中..."): | |
try: | |
halls_data, movie_list_sorted = fetch_and_process_server_movies() | |
st.toast("TMS 服务器数据获取成功!", icon="🎉") | |
st.markdown("#### 按影片查看所在影厅") | |
view2_data = [{'影片名称': item['assert_name'], | |
'所在影厅': " ".join(sorted([get_circled_number(h) for h in item['halls']])), | |
'文件名': item['content_name'], '时长': format_play_time(item['play_time'])} for item in | |
movie_list_sorted] | |
df_view2 = pd.DataFrame(view2_data) | |
st.dataframe(df_view2, hide_index=True, use_container_width=True) | |
st.markdown("#### 按影厅查看影片内容") | |
hall_tabs = st.tabs(halls_data.keys()) | |
for tab, hall_name in zip(hall_tabs, halls_data.keys()): | |
with tab: | |
view1_data_for_tab = [{'影片名称': item['details']['assert_name'], '所在影厅': " ".join( | |
sorted([get_circled_number(h) for h in item['details']['halls']])), | |
'文件名': item['content_name'], | |
'时长': format_play_time(item['details']['play_time'])} for item in | |
halls_data[hall_name]] | |
df_view1_tab = pd.DataFrame(view1_data_for_tab) | |
st.dataframe(df_view1_tab, hide_index=True, use_container_width=True) | |
except Exception as e: | |
st.error(f"查询服务器时出错: {e}") |