end-print / app.py
Ethscriptions's picture
Update app.py
9d3c2a0 verified
raw
history blame
8.58 kB
import pandas as pd
import streamlit as st
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
import io
import base64
import matplotlib.gridspec as gridspec
import math
import re
SPLIT_TIME = "17:30"
BUSINESS_START = "09:30"
BUSINESS_END = "01:30"
BORDER_COLOR = '#A9A9A9'
DATE_COLOR = '#A9A9A9'
def process_schedule(file):
"""处理上传的 Excel 文件,生成排序和分组后的打印内容"""
try:
# 读取 Excel,跳过前 8 行
df = pd.read_excel(file, skiprows=8)
# 提取所需列 (G9, H9, J9)
df = df.iloc[:, [6, 7, 9]] # G, H, J 列
df.columns = ['Hall', 'StartTime', 'EndTime']
# 清理数据
df = df.dropna(subset=['Hall', 'StartTime', 'EndTime'])
# 转换影厅格式为带LaTeX上标井号
df['Hall'] = df['Hall'].str.extract(r'(\d+)号').astype(str) + r'$^{\#}$'
# 保存原始时间字符串用于诊断
df['original_end'] = df['EndTime']
# 转换时间为 datetime 对象
base_date = datetime.today().date()
df['StartTime'] = pd.to_datetime(df['StartTime'])
df['EndTime'] = pd.to_datetime(df['EndTime'])
# 设置基准时间
business_start = datetime.strptime(f"{base_date} {BUSINESS_START}", "%Y-%m-%d %H:%M")
business_end = datetime.strptime(f"{base_date} {BUSINESS_END}", "%Y-%m-%d %H:%M")
# 处理跨天情况
if business_end < business_start:
business_end += timedelta(days=1)
# 标准化所有时间到同一天
for idx, row in df.iterrows():
end_time = row['EndTime']
if end_time.hour < 9:
df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
if row['StartTime'].hour >= 21 and end_time.hour < 9:
df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
# 筛选营业时间内的场次
df['time_for_comparison'] = df['EndTime'].apply(
lambda x: datetime.combine(base_date, x.time())
)
df.loc[df['time_for_comparison'].dt.hour < 9, 'time_for_comparison'] += timedelta(days=1)
valid_times = (
((df['time_for_comparison'] >= datetime.combine(base_date, business_start.time())) &
(df['time_for_comparison'] <= datetime.combine(base_date + timedelta(days=1), business_end.time()))
)
df = df[valid_times]
# 按散场时间排序
df = df.sort_values('EndTime')
# 分割数据
split_time = datetime.strptime(f"{base_date} {SPLIT_TIME}", "%Y-%m-%d %H:%M")
split_time_for_comparison = df['time_for_comparison'].apply(
lambda x: datetime.combine(base_date, split_time.time())
)
part1 = df[df['time_for_comparison'] <= split_time_for_comparison].copy()
part2 = df[df['time_for_comparison'] > split_time_for_comparison].copy()
# 格式化时间显示
for part in [part1, part2]:
part['EndTime'] = part['EndTime'].dt.strftime('%-I:%M')
# 读取日期信息
date_df = pd.read_excel(
file,
skiprows=5,
nrows=1,
usecols=[2],
header=None
)
date_cell = date_df.iloc[0, 0]
try:
if isinstance(date_cell, str):
date_str = datetime.strptime(date_cell, '%Y-%m-%d').strftime('%Y-%m-%d')
else:
date_str = pd.to_datetime(date_cell).strftime('%Y-%m-%d')
except:
date_str = datetime.today().strftime('%Y-%m-%d')
return part1[['Hall', 'EndTime']], part2[['Hall', 'EndTime']], date_str
except Exception as e:
st.error(f"处理文件时出错: {str(e)}")
return None, None, None
def create_print_layout(data, title, date_str):
"""创建打印布局"""
if data.empty:
return None
# 设置 A5 纸张横向尺寸
fig = plt.figure(figsize=(5.83, 8.27), dpi=300)
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05)
# 设置字体
plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS']
# 计算行数和总数
total_items = len(data)
num_cols = 3
num_rows = math.ceil(total_items / num_cols)
# 创建网格(优化间距参数)
gs = gridspec.GridSpec(num_rows + 1, num_cols,
hspace=0.2, wspace=0.2, # 增加行列间距
height_ratios=[1.2] * num_rows + [0.2])
# 计算最大字符数
max_char_count = 0
for hall, end_time in data.values:
clean_hall = re.sub(r'\$.*?\$', '#', hall)
clean_text = f"{clean_hall}{end_time}"
current_count = len(clean_text)
max_char_count = max(max_char_count, current_count)
# 动态计算基础字号(优化计算参数)
cell_width_inches = 5.83 / 3 # 每列宽度(A5横向)
available_width = cell_width_inches * 0.65 * 72 # 可用宽度减少到65%
avg_char_width = 0.8 # 加粗字体宽度系数
base_fontsize = available_width / (max_char_count * avg_char_width)
base_fontsize = min(26, base_fontsize) # 设置最大字号限制
# 填充数据
data_values = data.values.tolist()
while len(data_values) % 3 != 0:
data_values.append(['', ''])
sorted_data = [['', '']] * len(data_values)
for i, item in enumerate(data_values):
if item[0] and item[1]:
row = i % math.ceil(len(data_values)/3)
col = i // math.ceil(len(data_values)/3)
new_index = row * 3 + col
if new_index < len(sorted_data):
sorted_data[new_index] = item
for idx, (hall, end_time) in enumerate(sorted_data):
if hall and end_time:
row = idx // 3
col = idx % 3
ax = plt.subplot(gs[row, col])
# 设置单元格边界范围(增加内边距)
ax.set_xlim(0.1, 0.9) # 左右各留10%边距
ax.set_ylim(0.1, 0.9) # 上下各留10%边距
for spine in ax.spines.values():
spine.set_color(BORDER_COLOR)
spine.set_linewidth(0.5)
# 添加文本(字号缩小5%)
ax.text(0.5, 0.5, f"{hall}{end_time}",
fontsize=base_fontsize*0.95,
fontweight='bold',
ha='center',
va='center',
transform=ax.transAxes)
ax.set_xticks([])
ax.set_yticks([])
# 添加日期信息
ax_date = plt.subplot(gs[0, 0])
ax_date.text(0.05, 0.95, f"{date_str} {title}",
fontsize=base_fontsize * 0.4,
color=DATE_COLOR,
fontweight='bold',
ha='left',
va='top')
for spine in ax_date.spines.values():
spine.set_visible(False)
ax_date.set_xticks([])
ax_date.set_yticks([])
# 转换为图片
buffer = io.BytesIO()
plt.savefig(buffer, format='png', bbox_inches='tight', pad_inches=0.05)
buffer.seek(0)
image_base64 = base64.b64encode(buffer.getvalue()).decode()
plt.close()
return f'data:image/png;base64,{image_base64}'
# Streamlit 界面
st.set_page_config(page_title="散厅时间快捷打印", layout="wide")
st.title("散厅时间快捷打印")
uploaded_file = st.file_uploader("上传【放映场次核对表.xls】文件", type=["xls", "xlsx"])
if uploaded_file:
part1, part2, date_str = process_schedule(uploaded_file)
if part1 is not None and part2 is not None:
part1_image = create_print_layout(part1, "A", date_str)
part2_image = create_print_layout(part2, "C", date_str)
col1, col2 = st.columns(2)
with col1:
st.subheader("白班散场预览(时间 ≤ 17:30)")
if part1_image:
st.image(part1_image)
else:
st.info("白班部分没有数据")
with col2:
st.subheader("夜班散场预览(时间 > 17:30)")
if part2_image:
st.image(part2_image)
else:
st.info("夜班部分没有数据")