updated
Browse files
app.py
CHANGED
|
@@ -2,18 +2,34 @@ import streamlit as st
|
|
| 2 |
import tensorflow as tf
|
| 3 |
import cv2
|
| 4 |
import numpy as np
|
| 5 |
-
from huggingface_hub import from_pretrained_keras
|
| 6 |
from lime import lime_image
|
| 7 |
from skimage.segmentation import mark_boundaries
|
| 8 |
import matplotlib.pyplot as plt
|
|
|
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
|
|
|
|
|
|
| 11 |
#model = tf.keras.models.load_model("model/resnet_for_breast_cancer-v1.h5")
|
| 12 |
-
model = from_pretrained_keras("ErnestBeckham/BreastResViT-II")
|
| 13 |
explainer = lime_image.LimeImageExplainer()
|
| 14 |
|
| 15 |
-
hp = {}
|
| 16 |
-
hp['class_names'] = ["breast_benign", "breast_malignant"]
|
| 17 |
|
| 18 |
def main():
|
| 19 |
st.title("Breast Cancer Classification")
|
|
|
|
| 2 |
import tensorflow as tf
|
| 3 |
import cv2
|
| 4 |
import numpy as np
|
|
|
|
| 5 |
from lime import lime_image
|
| 6 |
from skimage.segmentation import mark_boundaries
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
+
from vit import CNN_ViT
|
| 9 |
|
| 10 |
+
hp = {}
|
| 11 |
+
hp['image_size'] = 512
|
| 12 |
+
hp['num_channels'] = 3
|
| 13 |
+
hp['patch_size'] = 64
|
| 14 |
+
hp['num_patches'] = (hp['image_size']**2) // (hp["patch_size"]**2)
|
| 15 |
+
hp["flat_patches_shape"] = (hp["num_patches"], hp['patch_size']*hp['patch_size']*hp["num_channels"])
|
| 16 |
+
hp['batch_size'] = 32
|
| 17 |
+
hp['lr'] = 1e-4
|
| 18 |
+
hp["num_epochs"] = 30
|
| 19 |
+
hp['num_classes'] = 2
|
| 20 |
+
hp["num_layers"] = 12
|
| 21 |
+
hp["hidden_dim"] = 512
|
| 22 |
+
hp["mlp_dim"] = 3072
|
| 23 |
+
hp['num_heads'] = 12
|
| 24 |
+
hp['dropout_rate'] = 0.1
|
| 25 |
+
hp['class_names'] = ["breast_benign", "breast_malignant"]
|
| 26 |
|
| 27 |
+
model = CNN_ViT(hp)
|
| 28 |
+
model.load_weights("model/ResViT_for_breast_cancer_classification(1).keras")
|
| 29 |
#model = tf.keras.models.load_model("model/resnet_for_breast_cancer-v1.h5")
|
| 30 |
+
#model = from_pretrained_keras("ErnestBeckham/BreastResViT-II")
|
| 31 |
explainer = lime_image.LimeImageExplainer()
|
| 32 |
|
|
|
|
|
|
|
| 33 |
|
| 34 |
def main():
|
| 35 |
st.title("Breast Cancer Classification")
|