model created
Browse files
vit.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow.keras import layers
|
3 |
+
|
4 |
+
class ClassToken(layers.Layer):
|
5 |
+
def __init__(self):
|
6 |
+
super().__init__()
|
7 |
+
|
8 |
+
def build(self, input_shape):
|
9 |
+
#initial values for the weight
|
10 |
+
w_init = tf.random_normal_initializer()
|
11 |
+
self.w = tf.Variable(
|
12 |
+
initial_value = w_init(shape=(1, 1, input_shape[-1]), dtype=tf.float32),
|
13 |
+
trainable = True
|
14 |
+
)
|
15 |
+
|
16 |
+
def call(self, inputs):
|
17 |
+
batch_size = tf.shape(inputs)[0]
|
18 |
+
hidden_dim = self.w.shape[-1]
|
19 |
+
|
20 |
+
#reshape
|
21 |
+
cls = tf.broadcast_to(self.w, [batch_size, 1, hidden_dim])
|
22 |
+
#change data type
|
23 |
+
cls = tf.cast(cls, dtype=inputs.dtype)
|
24 |
+
return cls
|
25 |
+
|
26 |
+
def mlp(x, cf):
|
27 |
+
x = layers.Dense(cf['mlp_dim'], activation='gelu')(x)
|
28 |
+
x = layers.Dropout(cf['dropout_rate'])(x)
|
29 |
+
x = layers.Dense(cf['hidden_dim'])(x)
|
30 |
+
x = layers.Dropout(cf['dropout_rate'])(x)
|
31 |
+
return x
|
32 |
+
|
33 |
+
|
34 |
+
def transformer_encoder(x, cf):
|
35 |
+
skip_1 = x
|
36 |
+
x = layers.LayerNormalization()(x)
|
37 |
+
x = layers.MultiHeadAttention(num_heads=cf['num_heads'], key_dim=cf['hidden_dim'])(x,x)
|
38 |
+
x = layers.Add()([x, skip_1])
|
39 |
+
|
40 |
+
skip_2 = x
|
41 |
+
x = layers.LayerNormalization()(x)
|
42 |
+
x = mlp(x, cf)
|
43 |
+
x = layers.Add()([x, skip_2])
|
44 |
+
|
45 |
+
return x
|
46 |
+
|
47 |
+
def resnet_block(x, filters, strides=1):
|
48 |
+
identity = x
|
49 |
+
|
50 |
+
x = layers.Conv2D(filters, kernel_size=5, strides=strides, padding='same')(x)
|
51 |
+
x = layers.BatchNormalization()(x)
|
52 |
+
x = layers.Activation('relu')(x)
|
53 |
+
|
54 |
+
x = layers.Conv2D(filters, kernel_size=5, strides=1, padding='same')(x)
|
55 |
+
x = layers.BatchNormalization()(x)
|
56 |
+
|
57 |
+
if strides > 1:
|
58 |
+
identity = layers.Conv2D(filters, kernel_size=1, strides=strides, padding='same')(identity)
|
59 |
+
identity = layers.BatchNormalization()(identity)
|
60 |
+
|
61 |
+
x = layers.Add()([x, identity])
|
62 |
+
x = layers.Activation('relu')(x)
|
63 |
+
return x
|
64 |
+
|
65 |
+
def build_resnet(input_shape):
|
66 |
+
|
67 |
+
x = layers.Conv2D(32, kernel_size=7, strides=2, padding='same')(input_shape)
|
68 |
+
x = layers.BatchNormalization()(x)
|
69 |
+
x = layers.Activation('relu')(x)
|
70 |
+
x = layers.MaxPooling2D(pool_size=3, strides=2, padding='same')(x)
|
71 |
+
|
72 |
+
x = resnet_block(x, filters=32)
|
73 |
+
x = resnet_block(x, filters=32)
|
74 |
+
|
75 |
+
x = resnet_block(x, filters=64, strides=2)
|
76 |
+
x = resnet_block(x, filters=64)
|
77 |
+
|
78 |
+
x = resnet_block(x, filters=128, strides=2)
|
79 |
+
x = resnet_block(x, filters=128)
|
80 |
+
|
81 |
+
x = resnet_block(x, filters=256, strides=2)
|
82 |
+
x = resnet_block(x, filters=256)
|
83 |
+
|
84 |
+
x = resnet_block(x, filters=512, strides=2)
|
85 |
+
x = resnet_block(x, filters=512)
|
86 |
+
|
87 |
+
return x
|
88 |
+
|
89 |
+
|
90 |
+
def CNN_ViT(hp):
|
91 |
+
input_shape = (hp['image_size'], hp['image_size'], hp['num_channels'])
|
92 |
+
inputs = layers.Input(input_shape)
|
93 |
+
print(inputs.shape)
|
94 |
+
output = build_resnet(inputs)
|
95 |
+
print(output.shape)
|
96 |
+
|
97 |
+
patch_embed = layers.Conv2D(hp['hidden_dim'], kernel_size=(hp['patch_size']), padding='same')(output)
|
98 |
+
print(patch_embed.shape)
|
99 |
+
_, h, w, f = output.shape
|
100 |
+
patch_embed = layers.Reshape((h*w,f))(output)
|
101 |
+
|
102 |
+
#Position Embedding
|
103 |
+
positions = tf.range(start=0, limit=hp['num_patches'], delta=1)
|
104 |
+
pos_embed = layers.Embedding(input_dim=hp['num_patches'], output_dim=hp['hidden_dim'])(positions)
|
105 |
+
|
106 |
+
print(f"patch embedding : {patch_embed.shape}")
|
107 |
+
print(f"position embeding : {pos_embed.shape}")
|
108 |
+
#Patch + Position Embedding
|
109 |
+
embed = patch_embed + pos_embed
|
110 |
+
|
111 |
+
#Token
|
112 |
+
token = ClassToken()(embed)
|
113 |
+
x = layers.Concatenate(axis=1)([token, embed]) #(None, 257, 256)
|
114 |
+
|
115 |
+
#Transformer encoder
|
116 |
+
for _ in range(hp['num_layers']):
|
117 |
+
x = transformer_encoder(x, hp)
|
118 |
+
|
119 |
+
|
120 |
+
x = layers.LayerNormalization()(x)
|
121 |
+
x = x[:, 0, :]
|
122 |
+
x = layers.Dense(hp['num_classes'], activation='softmax')(x)
|
123 |
+
|
124 |
+
model = Model(inputs, x)
|
125 |
+
|
126 |
+
return model
|
127 |
+
|