Upload 2 files
Browse files- backend.py +9 -46
- frontend.py +5 -21
backend.py
CHANGED
@@ -8,32 +8,27 @@ import google.generativeai as genai
|
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
11 |
-
# Load environment variables and configure Genai
|
12 |
load_dotenv()
|
13 |
genai.configure(api_key=os.getenv('GOOGLE_API_KEY'))
|
14 |
|
15 |
-
# Define the schema for the incoming request
|
16 |
class Query(BaseModel):
|
17 |
question: str
|
18 |
data_source: str
|
19 |
|
20 |
def get_gemini_response(question, prompt):
|
21 |
-
model = genai.GenerativeModel('gemini-1.5-pro')
|
22 |
response = model.generate_content([prompt, question])
|
23 |
return response.text
|
24 |
|
25 |
-
# Update column and table names for the new dataset
|
26 |
sql_cols_human = 'REQUESTID', 'DATETIMEINIT', 'SOURCE', 'DESCRIPTION', 'REQCATEGORY', 'STATUS', 'REFERREDTO', 'DATETIMECLOSED', 'City', 'State', 'Ward', 'Postcode'
|
27 |
csv_columns_human = ['REQUESTID', 'DATETIMEINIT', 'SOURCE', 'DESCRIPTION', 'REQCATEGORY', 'STATUS', 'REFERREDTO', 'DATETIMECLOSED', 'City', 'State', 'Ward', 'Postcode']
|
28 |
sql_cols = 'REQUESTID', 'DATETIMEINIT', 'SOURCE', 'DESCRIPTION', 'REQCATEGORY', 'STATUS', 'REFERREDTO', 'DATETIMECLOSED', 'City', 'State', 'Ward', 'Postcode'
|
29 |
-
# csv_columns = ["REQUESTID", "DATETIMEINIT", "SOURCE", "DESCRIPTION", "REQCATEGORY", "STATUS", "REFERREDTO", "DATETIMECLOSED", "PROBADDRESS" "City", "State", "Ward", "Postcode"]
|
30 |
|
31 |
def get_csv_columns():
|
32 |
df = pd.read_csv('wandsworth_callcenter_sampled.csv')
|
33 |
return df.columns.tolist()
|
34 |
|
35 |
csv_columns = get_csv_columns()
|
36 |
-
print(csv_columns)
|
37 |
|
38 |
sql_prompt = f"""
|
39 |
You are an expert in converting English questions to SQLite code!
|
@@ -54,8 +49,6 @@ Also, the SQL code should not have ''' in the beginning or at the end, and SQL w
|
|
54 |
Ensure that you only generate valid SQLite database queries, not pandas or Python code.
|
55 |
"""
|
56 |
|
57 |
-
|
58 |
-
|
59 |
csv_prompt = f"""
|
60 |
You are an expert in analyzing CSV data and converting English questions to pandas query syntax.
|
61 |
The CSV file is named 'wandsworth_callcenter_sampled.csv' and contains residents' call information in Wandsworth Council.
|
@@ -78,7 +71,6 @@ Please ensure:
|
|
78 |
3. Provide only the pandas query syntax without any additional explanation or markdown formatting.
|
79 |
Make sure to use only the columns that are available in the CSV file.
|
80 |
Ensure that you only generate valid pandas queries. NO SQL or other types of code/syntax.
|
81 |
-
|
82 |
"""
|
83 |
|
84 |
def execute_sql_query(query):
|
@@ -89,9 +81,7 @@ def execute_sql_query(query):
|
|
89 |
result = cursor.fetchall()
|
90 |
return result
|
91 |
except sqlite3.Error as e:
|
92 |
-
# Capture and explain SQL errors
|
93 |
sql_error_message = str(e)
|
94 |
-
# Send the error message back to Gemini for explanation
|
95 |
error_prompt = f"""
|
96 |
You are an expert SQL debugger and an assistant of the director. An error occurred while executing the following query:
|
97 |
{query}
|
@@ -107,56 +97,30 @@ def execute_sql_query(query):
|
|
107 |
finally:
|
108 |
conn.close()
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
def execute_pandas_query(query):
|
114 |
df = pd.read_csv('wandsworth_callcenter_sampled.csv')
|
115 |
-
df.columns = df.columns.str.upper()
|
116 |
-
print(f"df is loaded. The first line is: {df.head(1)}")
|
117 |
-
|
118 |
-
# Remove code block indicators (e.g., ```python and ```)
|
119 |
query = query.replace("```python", "").replace("```", "").strip()
|
120 |
-
|
121 |
-
# Split query into lines
|
122 |
-
query_lines = query.split("\n") # Split into individual statements
|
123 |
try:
|
124 |
result = None
|
125 |
-
exec_context = {'df': df, 'pd': pd}
|
126 |
for line in query_lines:
|
127 |
-
line = line.strip()
|
128 |
-
if line:
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
# Retrieve the final result if the last line is a statement
|
133 |
-
result = eval(query_lines[-1].strip(), exec_context) # Evaluate the last line for the result
|
134 |
-
|
135 |
-
print(f"Query Result Before Serialization: {result}")
|
136 |
-
|
137 |
-
# Handle DataFrame results
|
138 |
if isinstance(result, pd.DataFrame):
|
139 |
-
# Replace NaN and infinite values with JSON-compliant values
|
140 |
result = result.replace([float('inf'), -float('inf')], None).fillna(value="N/A")
|
141 |
return result.to_dict(orient='records')
|
142 |
-
|
143 |
-
# Handle Series results
|
144 |
elif isinstance(result, pd.Series):
|
145 |
result = result.replace([float('inf'), -float('inf')], None).fillna(value="N/A")
|
146 |
return result.to_dict()
|
147 |
-
|
148 |
-
# Handle scalar results
|
149 |
else:
|
150 |
return result
|
151 |
-
|
152 |
except Exception as e:
|
153 |
-
print(f"Error: {e}")
|
154 |
raise HTTPException(status_code=400, detail=f"Pandas Error: {str(e)}")
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
@app.post("/query")
|
161 |
async def process_query(query: Query):
|
162 |
if query.data_source == "SQL Database":
|
@@ -167,9 +131,8 @@ async def process_query(query: Query):
|
|
167 |
except HTTPException as e:
|
168 |
error_detail = e.detail
|
169 |
return {"query": ai_response, "error": error_detail["error"], "explanation": error_detail["explanation"]}
|
170 |
-
else:
|
171 |
ai_response = get_gemini_response(query.question, csv_prompt)
|
172 |
-
print(f"\n\nai_response: {ai_response}")
|
173 |
try:
|
174 |
result = execute_pandas_query(ai_response)
|
175 |
return {"query": ai_response, "result": result, "columns": csv_columns}
|
|
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
|
|
11 |
load_dotenv()
|
12 |
genai.configure(api_key=os.getenv('GOOGLE_API_KEY'))
|
13 |
|
|
|
14 |
class Query(BaseModel):
|
15 |
question: str
|
16 |
data_source: str
|
17 |
|
18 |
def get_gemini_response(question, prompt):
|
19 |
+
model = genai.GenerativeModel('gemini-1.5-pro')
|
20 |
response = model.generate_content([prompt, question])
|
21 |
return response.text
|
22 |
|
|
|
23 |
sql_cols_human = 'REQUESTID', 'DATETIMEINIT', 'SOURCE', 'DESCRIPTION', 'REQCATEGORY', 'STATUS', 'REFERREDTO', 'DATETIMECLOSED', 'City', 'State', 'Ward', 'Postcode'
|
24 |
csv_columns_human = ['REQUESTID', 'DATETIMEINIT', 'SOURCE', 'DESCRIPTION', 'REQCATEGORY', 'STATUS', 'REFERREDTO', 'DATETIMECLOSED', 'City', 'State', 'Ward', 'Postcode']
|
25 |
sql_cols = 'REQUESTID', 'DATETIMEINIT', 'SOURCE', 'DESCRIPTION', 'REQCATEGORY', 'STATUS', 'REFERREDTO', 'DATETIMECLOSED', 'City', 'State', 'Ward', 'Postcode'
|
|
|
26 |
|
27 |
def get_csv_columns():
|
28 |
df = pd.read_csv('wandsworth_callcenter_sampled.csv')
|
29 |
return df.columns.tolist()
|
30 |
|
31 |
csv_columns = get_csv_columns()
|
|
|
32 |
|
33 |
sql_prompt = f"""
|
34 |
You are an expert in converting English questions to SQLite code!
|
|
|
49 |
Ensure that you only generate valid SQLite database queries, not pandas or Python code.
|
50 |
"""
|
51 |
|
|
|
|
|
52 |
csv_prompt = f"""
|
53 |
You are an expert in analyzing CSV data and converting English questions to pandas query syntax.
|
54 |
The CSV file is named 'wandsworth_callcenter_sampled.csv' and contains residents' call information in Wandsworth Council.
|
|
|
71 |
3. Provide only the pandas query syntax without any additional explanation or markdown formatting.
|
72 |
Make sure to use only the columns that are available in the CSV file.
|
73 |
Ensure that you only generate valid pandas queries. NO SQL or other types of code/syntax.
|
|
|
74 |
"""
|
75 |
|
76 |
def execute_sql_query(query):
|
|
|
81 |
result = cursor.fetchall()
|
82 |
return result
|
83 |
except sqlite3.Error as e:
|
|
|
84 |
sql_error_message = str(e)
|
|
|
85 |
error_prompt = f"""
|
86 |
You are an expert SQL debugger and an assistant of the director. An error occurred while executing the following query:
|
87 |
{query}
|
|
|
97 |
finally:
|
98 |
conn.close()
|
99 |
|
|
|
|
|
|
|
100 |
def execute_pandas_query(query):
|
101 |
df = pd.read_csv('wandsworth_callcenter_sampled.csv')
|
102 |
+
df.columns = df.columns.str.upper()
|
|
|
|
|
|
|
103 |
query = query.replace("```python", "").replace("```", "").strip()
|
104 |
+
query_lines = query.split("\n")
|
|
|
|
|
105 |
try:
|
106 |
result = None
|
107 |
+
exec_context = {'df': df, 'pd': pd}
|
108 |
for line in query_lines:
|
109 |
+
line = line.strip()
|
110 |
+
if line:
|
111 |
+
exec(line, exec_context)
|
112 |
+
result = eval(query_lines[-1].strip(), exec_context)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
if isinstance(result, pd.DataFrame):
|
|
|
114 |
result = result.replace([float('inf'), -float('inf')], None).fillna(value="N/A")
|
115 |
return result.to_dict(orient='records')
|
|
|
|
|
116 |
elif isinstance(result, pd.Series):
|
117 |
result = result.replace([float('inf'), -float('inf')], None).fillna(value="N/A")
|
118 |
return result.to_dict()
|
|
|
|
|
119 |
else:
|
120 |
return result
|
|
|
121 |
except Exception as e:
|
|
|
122 |
raise HTTPException(status_code=400, detail=f"Pandas Error: {str(e)}")
|
123 |
|
|
|
|
|
|
|
|
|
124 |
@app.post("/query")
|
125 |
async def process_query(query: Query):
|
126 |
if query.data_source == "SQL Database":
|
|
|
131 |
except HTTPException as e:
|
132 |
error_detail = e.detail
|
133 |
return {"query": ai_response, "error": error_detail["error"], "explanation": error_detail["explanation"]}
|
134 |
+
else:
|
135 |
ai_response = get_gemini_response(query.question, csv_prompt)
|
|
|
136 |
try:
|
137 |
result = execute_pandas_query(ai_response)
|
138 |
return {"query": ai_response, "result": result, "columns": csv_columns}
|
frontend.py
CHANGED
@@ -2,30 +2,26 @@ import streamlit as st
|
|
2 |
import requests
|
3 |
import pandas as pd
|
4 |
|
5 |
-
# Page Configuration
|
6 |
st.set_page_config(
|
7 |
-
page_title="CallDataAI - Wandsworth Council
|
8 |
page_icon="π",
|
9 |
layout="wide",
|
10 |
initial_sidebar_state="expanded",
|
11 |
)
|
12 |
|
13 |
-
# Sidebar
|
14 |
st.sidebar.title("π CallDataAI")
|
15 |
st.sidebar.markdown(
|
16 |
"""
|
17 |
-
**Welcome to CallDataAI**, your AI-powered assistant for analyzing Wandsworth Council's
|
18 |
- Select the data source (SQL/CSV)
|
19 |
- Run pre-defined or custom queries
|
20 |
- Gain actionable insights
|
21 |
"""
|
22 |
)
|
23 |
|
24 |
-
# Data source selection
|
25 |
st.sidebar.markdown("### Select Data Source:")
|
26 |
data_source = st.sidebar.radio("", ('SQL Database', 'CSV Database'))
|
27 |
|
28 |
-
# Common queries section
|
29 |
st.sidebar.markdown("### Common Queries:")
|
30 |
common_queries = {
|
31 |
'SQL Database': [
|
@@ -45,22 +41,17 @@ common_queries = {
|
|
45 |
}
|
46 |
|
47 |
for idx, query in enumerate(common_queries[data_source]):
|
48 |
-
if st.sidebar.button(query, key=f"query_button_{idx}"):
|
49 |
st.session_state["common_query"] = query
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
# Title and Description
|
55 |
-
st.title("π CallDataAI - Wandsworth Council Call Center Analysis")
|
56 |
st.markdown(
|
57 |
"""
|
58 |
-
**CallDataAI** is an AI-powered chatbot designed for analyzing Wandsworth Council's
|
59 |
Input natural language queries to explore the data and gain actionable insights.
|
60 |
"""
|
61 |
)
|
62 |
|
63 |
-
# Input Section
|
64 |
with st.container():
|
65 |
st.markdown("### Enter Your Question")
|
66 |
question = st.text_input(
|
@@ -68,24 +59,19 @@ with st.container():
|
|
68 |
)
|
69 |
submit = st.button("Submit", type="primary")
|
70 |
|
71 |
-
# Main Content
|
72 |
if submit:
|
73 |
-
# Send request to FastAPI backend
|
74 |
with st.spinner("Processing your request..."):
|
75 |
response = requests.post(
|
76 |
"http://localhost:8000/query", json={"question": question, "data_source": data_source}
|
77 |
)
|
78 |
|
79 |
-
# Handle response
|
80 |
if response.status_code == 200:
|
81 |
data = response.json()
|
82 |
|
83 |
-
# Error Handling
|
84 |
if "error" in data:
|
85 |
with st.expander("Error Explanation"):
|
86 |
st.error(data["explanation"])
|
87 |
|
88 |
-
# Display Results
|
89 |
else:
|
90 |
col1, col2 = st.columns(2)
|
91 |
|
@@ -117,7 +103,6 @@ if submit:
|
|
117 |
st.markdown("### Available CSV Columns")
|
118 |
st.write(data["columns"])
|
119 |
|
120 |
-
# Update chat history in session state
|
121 |
if "chat_history" not in st.session_state:
|
122 |
st.session_state["chat_history"] = []
|
123 |
|
@@ -127,7 +112,6 @@ if submit:
|
|
127 |
else:
|
128 |
st.error(f"Error processing your request: {response.text}")
|
129 |
|
130 |
-
# Chat History Section
|
131 |
with st.container():
|
132 |
st.markdown("### Chat History")
|
133 |
if "chat_history" in st.session_state:
|
|
|
2 |
import requests
|
3 |
import pandas as pd
|
4 |
|
|
|
5 |
st.set_page_config(
|
6 |
+
page_title="CallDataAI - Wandsworth Council NetCall Analysis",
|
7 |
page_icon="π",
|
8 |
layout="wide",
|
9 |
initial_sidebar_state="expanded",
|
10 |
)
|
11 |
|
|
|
12 |
st.sidebar.title("π CallDataAI")
|
13 |
st.sidebar.markdown(
|
14 |
"""
|
15 |
+
**Welcome to CallDataAI**, your AI-powered assistant for analyzing Wandsworth Council's NetCall data. Use the menu below to:
|
16 |
- Select the data source (SQL/CSV)
|
17 |
- Run pre-defined or custom queries
|
18 |
- Gain actionable insights
|
19 |
"""
|
20 |
)
|
21 |
|
|
|
22 |
st.sidebar.markdown("### Select Data Source:")
|
23 |
data_source = st.sidebar.radio("", ('SQL Database', 'CSV Database'))
|
24 |
|
|
|
25 |
st.sidebar.markdown("### Common Queries:")
|
26 |
common_queries = {
|
27 |
'SQL Database': [
|
|
|
41 |
}
|
42 |
|
43 |
for idx, query in enumerate(common_queries[data_source]):
|
44 |
+
if st.sidebar.button(query, key=f"query_button_{idx}"):
|
45 |
st.session_state["common_query"] = query
|
46 |
|
47 |
+
st.title("π CallDataAI - Wandsworth Council NetCall Analysis")
|
|
|
|
|
|
|
|
|
48 |
st.markdown(
|
49 |
"""
|
50 |
+
**CallDataAI** is an AI-powered chatbot designed for analyzing Wandsworth Council's NetCall data.
|
51 |
Input natural language queries to explore the data and gain actionable insights.
|
52 |
"""
|
53 |
)
|
54 |
|
|
|
55 |
with st.container():
|
56 |
st.markdown("### Enter Your Question")
|
57 |
question = st.text_input(
|
|
|
59 |
)
|
60 |
submit = st.button("Submit", type="primary")
|
61 |
|
|
|
62 |
if submit:
|
|
|
63 |
with st.spinner("Processing your request..."):
|
64 |
response = requests.post(
|
65 |
"http://localhost:8000/query", json={"question": question, "data_source": data_source}
|
66 |
)
|
67 |
|
|
|
68 |
if response.status_code == 200:
|
69 |
data = response.json()
|
70 |
|
|
|
71 |
if "error" in data:
|
72 |
with st.expander("Error Explanation"):
|
73 |
st.error(data["explanation"])
|
74 |
|
|
|
75 |
else:
|
76 |
col1, col2 = st.columns(2)
|
77 |
|
|
|
103 |
st.markdown("### Available CSV Columns")
|
104 |
st.write(data["columns"])
|
105 |
|
|
|
106 |
if "chat_history" not in st.session_state:
|
107 |
st.session_state["chat_history"] = []
|
108 |
|
|
|
112 |
else:
|
113 |
st.error(f"Error processing your request: {response.text}")
|
114 |
|
|
|
115 |
with st.container():
|
116 |
st.markdown("### Chat History")
|
117 |
if "chat_history" in st.session_state:
|