Upload 6 files
Browse files- .env +1 -0
- backend.py +177 -0
- frontend.py +142 -0
- requirements.txt +9 -0
- wandsworth_callcenter_sampled.csv +0 -0
- wandsworth_callcenter_sampled.db +0 -0
.env
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
GOOGLE_API_KEY=you_api
|
backend.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
import sqlite3
|
4 |
+
import pandas as pd
|
5 |
+
import os
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
import google.generativeai as genai
|
8 |
+
|
9 |
+
app = FastAPI()
|
10 |
+
|
11 |
+
# Load environment variables and configure Genai
|
12 |
+
load_dotenv()
|
13 |
+
genai.configure(api_key=os.getenv('GOOGLE_API_KEY'))
|
14 |
+
|
15 |
+
# Define the schema for the incoming request
|
16 |
+
class Query(BaseModel):
|
17 |
+
question: str
|
18 |
+
data_source: str
|
19 |
+
|
20 |
+
def get_gemini_response(question, prompt):
|
21 |
+
model = genai.GenerativeModel('gemini-1.5-pro') # https://ai.google.dev/pricing?authuser=1#1_5pro
|
22 |
+
response = model.generate_content([prompt, question])
|
23 |
+
return response.text
|
24 |
+
|
25 |
+
# Update column and table names for the new dataset
|
26 |
+
sql_cols_human = 'REQUESTID', 'DATETIMEINIT', 'SOURCE', 'DESCRIPTION', 'REQCATEGORY', 'STATUS', 'REFERREDTO', 'DATETIMECLOSED', 'City', 'State', 'Ward', 'Postcode'
|
27 |
+
csv_columns_human = ['REQUESTID', 'DATETIMEINIT', 'SOURCE', 'DESCRIPTION', 'REQCATEGORY', 'STATUS', 'REFERREDTO', 'DATETIMECLOSED', 'City', 'State', 'Ward', 'Postcode']
|
28 |
+
sql_cols = 'REQUESTID', 'DATETIMEINIT', 'SOURCE', 'DESCRIPTION', 'REQCATEGORY', 'STATUS', 'REFERREDTO', 'DATETIMECLOSED', 'City', 'State', 'Ward', 'Postcode'
|
29 |
+
# csv_columns = ["REQUESTID", "DATETIMEINIT", "SOURCE", "DESCRIPTION", "REQCATEGORY", "STATUS", "REFERREDTO", "DATETIMECLOSED", "PROBADDRESS" "City", "State", "Ward", "Postcode"]
|
30 |
+
|
31 |
+
def get_csv_columns():
|
32 |
+
df = pd.read_csv('wandsworth_callcenter_sampled.csv')
|
33 |
+
return df.columns.tolist()
|
34 |
+
|
35 |
+
csv_columns = get_csv_columns()
|
36 |
+
print(csv_columns)
|
37 |
+
|
38 |
+
sql_prompt = f"""
|
39 |
+
You are an expert in converting English questions to SQLite code!
|
40 |
+
The SQLite database has the name CALLCENTER_REQUESTS and has the following Columns: {', '.join(sql_cols)}
|
41 |
+
|
42 |
+
Here are some key details about the dataset:
|
43 |
+
- `SOURCE`: Phone, Online Form, FixMyStreet, Email, Telephone/Email, Telephone Voicemail, Other, Local Council Office.
|
44 |
+
- `REQCATEGORY`: Blocked Drains, Council Building Maintenance, Fly-Tipping, Street and Pavement Maintenance, Recycling, Traffic Signage Issues, Parks Maintenance, Graffiti Removal, Tree Maintenance.
|
45 |
+
- `STATUS`: Resolved, In Progress, Cancelled by Customer, Referred to External Agency, Work Order Created, Under Review.
|
46 |
+
- `REFERREDTO`: Council Enforcement, Transport for London (TfL), Thames Water, Royal Mail, UK Power Networks.
|
47 |
+
|
48 |
+
For example:
|
49 |
+
- Would you please list all unresolved calls? command: SELECT * FROM CALLCENTER_REQUESTS WHERE STATUS='In Progress';
|
50 |
+
- Would you please count the total number of calls? command: SELECT COUNT(*) FROM CALLCENTER_REQUESTS;
|
51 |
+
- List all unique wards please? command: SELECT DISTINCT Ward FROM CALLCENTER_REQUESTS;
|
52 |
+
|
53 |
+
Also, the SQL code should not have ''' in the beginning or at the end, and SQL word in output.
|
54 |
+
Ensure that you only generate valid SQLite database queries, not pandas or Python code.
|
55 |
+
"""
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
csv_prompt = f"""
|
60 |
+
You are an expert in analyzing CSV data and converting English questions to pandas query syntax.
|
61 |
+
The CSV file is named 'wandsworth_callcenter_sampled.csv' and contains residents' call information in Wandsworth Council.
|
62 |
+
The available columns in the CSV file are: {', '.join(csv_columns)}
|
63 |
+
|
64 |
+
Here are some key details about the dataset:
|
65 |
+
- `SOURCE`: Phone, Online Form, FixMyStreet, Email, Telephone/Email, Telephone Voicemail, Other, Local Council Office.
|
66 |
+
- `REQCATEGORY`: Blocked Drains, Council Building Maintenance, Fly-Tipping, Street and Pavement Maintenance, Recycling, Traffic Signage Issues, Parks Maintenance, Graffiti Removal, Tree Maintenance.
|
67 |
+
- `STATUS`: Resolved, In Progress, Cancelled by Customer, Referred to External Agency, Work Order Created, Under Review.
|
68 |
+
- `REFERREDTO`: Council Enforcement, Transport for London (TfL), Thames Water, Royal Mail, UK Power Networks.
|
69 |
+
|
70 |
+
For example:
|
71 |
+
- How many calls in total? len(df.REQUESTID)
|
72 |
+
- What are all the calls referred to external agencies? df[df['REFERREDTO'].notna()]
|
73 |
+
- Would you please show the top 5 most frequent call categories? df['REQCATEGORY'].value_counts().head(5)
|
74 |
+
|
75 |
+
Please ensure:
|
76 |
+
1. Always reference columns using `df['COLUMN_NAME']`.
|
77 |
+
2. Do not use Python lists like `['COLUMN_NAME']` to refer to columns.
|
78 |
+
3. Provide only the pandas query syntax without any additional explanation or markdown formatting.
|
79 |
+
Make sure to use only the columns that are available in the CSV file.
|
80 |
+
Ensure that you only generate valid pandas queries. NO SQL or other types of code/syntax.
|
81 |
+
|
82 |
+
"""
|
83 |
+
|
84 |
+
def execute_sql_query(query):
|
85 |
+
conn = sqlite3.connect('wandsworth_callcenter_sampled.db')
|
86 |
+
try:
|
87 |
+
cursor = conn.cursor()
|
88 |
+
cursor.execute(query)
|
89 |
+
result = cursor.fetchall()
|
90 |
+
return result
|
91 |
+
except sqlite3.Error as e:
|
92 |
+
# Capture and explain SQL errors
|
93 |
+
sql_error_message = str(e)
|
94 |
+
# Send the error message back to Gemini for explanation
|
95 |
+
error_prompt = f"""
|
96 |
+
You are an expert SQL debugger and an assistant of the director. An error occurred while executing the following query:
|
97 |
+
{query}
|
98 |
+
|
99 |
+
The error was: {sql_error_message}
|
100 |
+
Please explain the error in simple laymen terms. Do Not explain.
|
101 |
+
Do Not include any programming code, e.g. sql or python syntax, etc.
|
102 |
+
And finally politely remind the user there are only information about the following columns{', '.join(sql_cols_human)}.
|
103 |
+
Explain this in layman's terms and remind the user that the dataset contains the following columns: {', '.join(sql_cols_human)}.
|
104 |
+
"""
|
105 |
+
explanation = get_gemini_response("", error_prompt)
|
106 |
+
raise HTTPException(status_code=400, detail={"error": sql_error_message, "explanation": explanation})
|
107 |
+
finally:
|
108 |
+
conn.close()
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
def execute_pandas_query(query):
|
114 |
+
df = pd.read_csv('wandsworth_callcenter_sampled.csv')
|
115 |
+
df.columns = df.columns.str.upper() # Normalize column names to uppercase
|
116 |
+
print(f"df is loaded. The first line is: {df.head(1)}")
|
117 |
+
|
118 |
+
# Remove code block indicators (e.g., ```python and ```)
|
119 |
+
query = query.replace("```python", "").replace("```", "").strip()
|
120 |
+
|
121 |
+
# Split query into lines
|
122 |
+
query_lines = query.split("\n") # Split into individual statements
|
123 |
+
try:
|
124 |
+
result = None
|
125 |
+
exec_context = {'df': df, 'pd': pd} # Execution context for exec()
|
126 |
+
for line in query_lines:
|
127 |
+
line = line.strip() # Remove extra spaces
|
128 |
+
if line: # Skip empty lines
|
129 |
+
print(f"Executing line: {line}")
|
130 |
+
exec(line, exec_context) # Execute each line in the context
|
131 |
+
|
132 |
+
# Retrieve the final result if the last line is a statement
|
133 |
+
result = eval(query_lines[-1].strip(), exec_context) # Evaluate the last line for the result
|
134 |
+
|
135 |
+
print(f"Query Result Before Serialization: {result}")
|
136 |
+
|
137 |
+
# Handle DataFrame results
|
138 |
+
if isinstance(result, pd.DataFrame):
|
139 |
+
# Replace NaN and infinite values with JSON-compliant values
|
140 |
+
result = result.replace([float('inf'), -float('inf')], None).fillna(value="N/A")
|
141 |
+
return result.to_dict(orient='records')
|
142 |
+
|
143 |
+
# Handle Series results
|
144 |
+
elif isinstance(result, pd.Series):
|
145 |
+
result = result.replace([float('inf'), -float('inf')], None).fillna(value="N/A")
|
146 |
+
return result.to_dict()
|
147 |
+
|
148 |
+
# Handle scalar results
|
149 |
+
else:
|
150 |
+
return result
|
151 |
+
|
152 |
+
except Exception as e:
|
153 |
+
print(f"Error: {e}")
|
154 |
+
raise HTTPException(status_code=400, detail=f"Pandas Error: {str(e)}")
|
155 |
+
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
@app.post("/query")
|
161 |
+
async def process_query(query: Query):
|
162 |
+
if query.data_source == "SQL Database":
|
163 |
+
ai_response = get_gemini_response(query.question, sql_prompt)
|
164 |
+
try:
|
165 |
+
result = execute_sql_query(ai_response)
|
166 |
+
return {"query": ai_response, "result": result}
|
167 |
+
except HTTPException as e:
|
168 |
+
error_detail = e.detail
|
169 |
+
return {"query": ai_response, "error": error_detail["error"], "explanation": error_detail["explanation"]}
|
170 |
+
else: # CSV Data
|
171 |
+
ai_response = get_gemini_response(query.question, csv_prompt)
|
172 |
+
print(f"\n\nai_response: {ai_response}")
|
173 |
+
try:
|
174 |
+
result = execute_pandas_query(ai_response)
|
175 |
+
return {"query": ai_response, "result": result, "columns": csv_columns}
|
176 |
+
except HTTPException as e:
|
177 |
+
raise HTTPException(status_code=400, detail=f"Error in pandas query: {e.detail}")
|
frontend.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
# Page Configuration
|
6 |
+
st.set_page_config(
|
7 |
+
page_title="CallDataAI - Wandsworth Council Call Center Analysis",
|
8 |
+
page_icon="π",
|
9 |
+
layout="wide",
|
10 |
+
initial_sidebar_state="expanded",
|
11 |
+
)
|
12 |
+
|
13 |
+
# Sidebar
|
14 |
+
st.sidebar.title("π CallDataAI")
|
15 |
+
st.sidebar.markdown(
|
16 |
+
"""
|
17 |
+
**Welcome to CallDataAI**, your AI-powered assistant for analyzing Wandsworth Council's Call Center data. Use the menu below to:
|
18 |
+
- Select the data source (SQL/CSV)
|
19 |
+
- Run pre-defined or custom queries
|
20 |
+
- Gain actionable insights
|
21 |
+
"""
|
22 |
+
)
|
23 |
+
|
24 |
+
# Data source selection
|
25 |
+
st.sidebar.markdown("### Select Data Source:")
|
26 |
+
data_source = st.sidebar.radio("", ('SQL Database', 'CSV Database'))
|
27 |
+
|
28 |
+
# Common queries section
|
29 |
+
st.sidebar.markdown("### Common Queries:")
|
30 |
+
common_queries = {
|
31 |
+
'SQL Database': [
|
32 |
+
'List all unique Source',
|
33 |
+
'List all unique request categories',
|
34 |
+
'List all unique wards and their postcodes',
|
35 |
+
'Count the total number of calls',
|
36 |
+
'List all unresolved calls',
|
37 |
+
'What are the total number of requests per year?',
|
38 |
+
'What are the average time (days) to close request per request category?',
|
39 |
+
],
|
40 |
+
'CSV Database': [
|
41 |
+
'Count total number of call requests',
|
42 |
+
'List all calls referred to external agencies',
|
43 |
+
'Show top 5 most frequent call categories',
|
44 |
+
]
|
45 |
+
}
|
46 |
+
|
47 |
+
for idx, query in enumerate(common_queries[data_source]):
|
48 |
+
if st.sidebar.button(query, key=f"query_button_{idx}"): # Add unique key
|
49 |
+
st.session_state["common_query"] = query
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
# Title and Description
|
55 |
+
st.title("π CallDataAI - Wandsworth Council Call Center Analysis")
|
56 |
+
st.markdown(
|
57 |
+
"""
|
58 |
+
**CallDataAI** is an AI-powered chatbot designed for analyzing Wandsworth Council's Call Center data.
|
59 |
+
Input natural language queries to explore the data and gain actionable insights.
|
60 |
+
"""
|
61 |
+
)
|
62 |
+
|
63 |
+
# Input Section
|
64 |
+
with st.container():
|
65 |
+
st.markdown("### Enter Your Question")
|
66 |
+
question = st.text_input(
|
67 |
+
"Input:", key="input", value=st.session_state.get("common_query", ""), placeholder="Type your query here..."
|
68 |
+
)
|
69 |
+
submit = st.button("Submit", type="primary")
|
70 |
+
|
71 |
+
# Main Content
|
72 |
+
if submit:
|
73 |
+
# Send request to FastAPI backend
|
74 |
+
with st.spinner("Processing your request..."):
|
75 |
+
response = requests.post(
|
76 |
+
"http://localhost:8000/query", json={"question": question, "data_source": data_source}
|
77 |
+
)
|
78 |
+
|
79 |
+
# Handle response
|
80 |
+
if response.status_code == 200:
|
81 |
+
data = response.json()
|
82 |
+
|
83 |
+
# Error Handling
|
84 |
+
if "error" in data:
|
85 |
+
with st.expander("Error Explanation"):
|
86 |
+
st.error(data["explanation"])
|
87 |
+
|
88 |
+
# Display Results
|
89 |
+
else:
|
90 |
+
col1, col2 = st.columns(2)
|
91 |
+
|
92 |
+
with col1:
|
93 |
+
st.markdown(f"### Generated {'SQL' if data_source == 'SQL Database' else 'Pandas'} Query")
|
94 |
+
st.code(data["query"], language="sql" if data_source == "SQL Database" else "python")
|
95 |
+
|
96 |
+
with col2:
|
97 |
+
st.markdown("### Query Results")
|
98 |
+
result = data["result"]
|
99 |
+
|
100 |
+
if isinstance(result, list) and len(result) > 0:
|
101 |
+
if isinstance(result[0], dict):
|
102 |
+
df = pd.DataFrame(result)
|
103 |
+
st.dataframe(df)
|
104 |
+
elif isinstance(result[0], list):
|
105 |
+
df = pd.DataFrame(result)
|
106 |
+
st.dataframe(df)
|
107 |
+
else:
|
108 |
+
st.write(result)
|
109 |
+
|
110 |
+
elif isinstance(result, dict):
|
111 |
+
st.json(result)
|
112 |
+
|
113 |
+
else:
|
114 |
+
st.write(result)
|
115 |
+
|
116 |
+
if data_source == "CSV Database":
|
117 |
+
st.markdown("### Available CSV Columns")
|
118 |
+
st.write(data["columns"])
|
119 |
+
|
120 |
+
# Update chat history in session state
|
121 |
+
if "chat_history" not in st.session_state:
|
122 |
+
st.session_state["chat_history"] = []
|
123 |
+
|
124 |
+
st.session_state["chat_history"].append(f"π§({data_source}): {question}")
|
125 |
+
st.session_state["chat_history"].append(f"π€: {data['query']}")
|
126 |
+
|
127 |
+
else:
|
128 |
+
st.error(f"Error processing your request: {response.text}")
|
129 |
+
|
130 |
+
# Chat History Section
|
131 |
+
with st.container():
|
132 |
+
st.markdown("### Chat History")
|
133 |
+
if "chat_history" in st.session_state:
|
134 |
+
for message in st.session_state["chat_history"]:
|
135 |
+
st.text(message)
|
136 |
+
if st.button("Clear Chat History"):
|
137 |
+
st.session_state["chat_history"] = []
|
138 |
+
st.success("Chat history cleared!")
|
139 |
+
|
140 |
+
st.markdown("---")
|
141 |
+
st.markdown("Developed by Lorentz Yeung, 2024 Christmas")
|
142 |
+
st.markdown("Contact: [email protected] or [email protected]")
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.110.3
|
2 |
+
google-generativeai==0.8.3
|
3 |
+
pandas==2.2.3
|
4 |
+
pydantic==2.9.2
|
5 |
+
python-dotenv==1.0.1
|
6 |
+
uvicorn==0.30.6
|
7 |
+
streamlit==1.40.1
|
8 |
+
requests==2.32.3
|
9 |
+
|
wandsworth_callcenter_sampled.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
wandsworth_callcenter_sampled.db
ADDED
Binary file (197 kB). View file
|
|