Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,070 Bytes
5f870ca 996d4eb 5f870ca 9350a8c 9571b72 5f870ca 80524d9 5f870ca 694f7e2 5f870ca c5c3010 9a0f0f5 5f870ca 7c2502a 5f870ca b849db2 5f870ca 885de3a 5f870ca 885de3a 5f870ca 23991fe 5f870ca c255fb2 5f870ca 1288171 7c2502a 0b75061 7c2502a 4c8802b dfd1066 5f870ca dfd1066 4c8802b dfd1066 4c8802b dfd1066 9571b72 41a0b93 5f870ca 9350a8c 5f870ca 5948818 5f870ca 021d6bd 5f870ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
import os
import argparse
import traceback
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
logging.getLogger("http").setLevel(logging.WARNING)
logging.getLogger("httpx").setLevel(logging.WARNING)
import spaces
import gradio as gr
from conversation_public import default_conversation
auth_token = os.environ.get("TOKEN_FROM_SECRET")
##########################################
# LLM part
##########################################
import torch
from transformers import AutoProcessor, AutoTokenizer, AutoModelForCausalLM
from transformers import Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
from qwen_vl_utils import process_vision_info
from threading import Thread
# === Prompts ===
SYSTEM_PROMPT_LLM = "You are a helpful assistant."
SYSTEM_PROMPT_CAP = "You are given an image and a relevant question. Based on the query, please describe the image in details. Do not try to answer the question."
CAPTION_PROMPT = "Question: {}\nPlease describe the image. DO NOT try to answer the question!"
LLM_PROMPT = """In the following text, you will receive a detailed caption of an image and a relevant question. In addition, you will be provided with a tentative model response. You goal is to answer the question using these information.\n\n### The detailed caption of the provided image: {}\n\n### Note that the caption might contain incorrect solutions, do not be misguided by them.\n\n### A problem to be solved: {}\n\n### A tentative model response: {}\n\n### Note that the above tentative response might be inaccurate (due to calculation errors, incorrect logic/reasoning and so on), under such a case, please ignore it and give your own solutions. However, if you do not have enough evidence to show it is wrong, please output the tentative response."""
# === Initialize Models ===
MLLM_MODEL_PATH = "KaiChen1998/RACRO-7B-CRO-GRPO"
LLM_MODEL_PATH = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
processor = AutoProcessor.from_pretrained(MLLM_MODEL_PATH)
tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_PATH)
mllm = Qwen2_5_VLForConditionalGeneration.from_pretrained(MLLM_MODEL_PATH, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", device_map="auto")
llm = AutoModelForCausalLM.from_pretrained(LLM_MODEL_PATH, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", device_map="auto")
mllm_sampling = dict(do_sample=False, temperature=0, max_new_tokens=8192)
llm_sampling = dict(temperature=0.6, top_p=0.95, max_new_tokens=8192)
# === Build Prompts ===
def build_messages(image_path, question):
cap_msgs = [
{"role": "system", "content": SYSTEM_PROMPT_CAP},
{"role": "user", "content": [{"type": "image", "image": image_path}, {"type": "text", "text": CAPTION_PROMPT.format(question)}]}
]
qa_msgs = [
{"role": "user", "content": [{"type": "image", "image": image_path}, {"type": "text", "text": question + " Please think step by step. The final answer MUST BE put in \\boxed{}."}]}
]
return cap_msgs, qa_msgs
##########################################
# Streaming
##########################################
mllm_streamer = TextIteratorStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
llm_streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
def stream_response(model, inputs, streamer, prompt, gen_kwargs):
thread = Thread(target=model.generate, kwargs=dict(
streamer=streamer,
**inputs,
**gen_kwargs
)
)
thread.start()
generated_text = prompt
for new_text in streamer:
generated_text += new_text
yield generated_text
##########################################
# Gradio part
##########################################
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)
server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
server_oom_msg = "**OUT OF GPU MEMORY DETECTED. PLEASE DECREASE THE MAX OUTPUT TOKENS AND REGENERATE.**"
def load_demo_refresh_model_list():
logging.info(f"load_demo.")
state = default_conversation.copy()
return state
def regenerate(state, image_process_mode):
logging.info(f"regenerate.")
state.messages = state.messages[:-3]
prev_human_msg = state.messages[-1]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode, *prev_human_msg[1][3:])
state.skip_next = False
return (state, state.to_gradio_chatbot_public(), "", None) + (disable_btn,) * 2
def clear_history():
logging.info(f"clear_history.")
state = default_conversation.copy()
return (state, state.to_gradio_chatbot_public(), "", None) + (disable_btn,) * 2
############
# Show prompt in the chatbot
# Input: [state, textbox, imagebox, image_process_mode]
# Return: [state, chatbot, textbox, imagebox] + btn_list
############
def add_text(state, text, image, image_process_mode):
# Input legality checking
logging.info(f"add_text. len: {len(text)}")
if len(text) <= 0 or image is None:
state.skip_next = True
return (state, state.to_gradio_chatbot_public(), "", None) + (no_change_btn,) * 2
# Deal with image inputs
if image is not None:
text = (text, image, image_process_mode, None)
# Single round only
state = default_conversation.copy()
state.append_message(state.roles[0], text)
state.skip_next = False
logging.info(str(state.messages))
return (state, state.to_gradio_chatbot_public(), "", None) + (disable_btn,) * 2
############
# Get response
# Input: [state]
# Return: [state, chatbot] + btn_list
############
@spaces.GPU
def http_bot(state):
logging.info(f"http_bot.")
if state.skip_next:
yield (state, state.to_gradio_chatbot_public()) + (no_change_btn,) * 2
return
# Retrive prompt
prompt = state.messages[-1][-1][0]
all_images = state.get_images(return_pil=True)[0]
pload = {"prompt": prompt, "images": f'List of {len(state.get_images())} images: {all_images}'}
logging.info(f"==== request ====\n{pload}")
# Construct prompt
cap_msgs, qa_msgs = build_messages(all_images, prompt)
cap_prompt = processor.apply_chat_template(cap_msgs, tokenize=False, add_generation_prompt=True)
qa_prompt = processor.apply_chat_template(qa_msgs, tokenize=False, add_generation_prompt=True)
image_tensor, _ = process_vision_info(cap_msgs)
cap_inputs = processor(text=cap_prompt, images=image_tensor, return_tensors="pt").to(mllm.device)
qa_inputs = processor(text=qa_prompt, images=image_tensor, return_tensors="pt").to(mllm.device)
# Step 1: Tentative Response
state.append_message(state.roles[1], "# Tentative Response\n\nβ")
try:
for generated_text in stream_response(mllm, qa_inputs, mllm_streamer, qa_prompt, mllm_sampling):
output = generated_text[len(qa_prompt):].strip()
state.messages[-1][-1] = "# Tentative Response\n\n" + output + "β"
yield (state, state.to_gradio_chatbot_public()) + (disable_btn,) * 2
except Exception as e:
os.system("nvidia-smi")
logging.info(traceback.print_exc())
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot_public()) + (enable_btn,) * 2
return
tentative_answer = output
logging.info(f"Tentative Response: {tentative_answer}")
state.messages[-1][-1] = state.messages[-1][-1][:-1]
yield (state, state.to_gradio_chatbot_public()) + (disable_btn,) * 2
# Step 2: Query-conditioned Caption
state.append_message(state.roles[1], "# Query-conditioned Caption\n\nβ")
try:
for generated_text in stream_response(mllm, cap_inputs, mllm_streamer, cap_prompt, mllm_sampling):
output = generated_text[len(cap_prompt):].strip()
state.messages[-1][-1] = "# Query-conditioned Caption\n\n" + output + "β"
yield (state, state.to_gradio_chatbot_public()) + (disable_btn,) * 2
except Exception as e:
os.system("nvidia-smi")
logging.info(traceback.print_exc())
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot_public()) + (enable_btn,) * 2
return
caption_text = output
logging.info(f"Query-conditioned Caption: {caption_text}")
state.messages[-1][-1] = state.messages[-1][-1][:-1]
yield (state, state.to_gradio_chatbot_public()) + (disable_btn,) * 2
# Step 3: Text-only Reasoning
reason_msgs = [
{"role": "system", "content": SYSTEM_PROMPT_LLM},
{"role": "user", "content": LLM_PROMPT.format(caption_text, prompt, tentative_answer)}
]
reason_prompt = tokenizer.apply_chat_template(reason_msgs, tokenize=False, add_generation_prompt=True)
reason_inputs = tokenizer(reason_prompt, return_tensors="pt").to(llm.device)
state.append_message(state.roles[1], "# Text-only Reasoning\n\nβ")
try:
for generated_text in stream_response(llm, reason_inputs, llm_streamer, reason_prompt, llm_sampling):
output = generated_text[len(reason_prompt):].strip()
state.messages[-1][-1] = "# Text-only Reasoning\n\n" + output + "β"
yield (state, state.to_gradio_chatbot_public()) + (disable_btn,) * 2
except Exception as e:
os.system("nvidia-smi")
logging.info(traceback.print_exc())
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot_public()) + (enable_btn,) * 2
return
final_response = output
logging.info(f"Text-only Reasoning: {final_response}")
state.messages[-1][-1] = state.messages[-1][-1][:-1]
yield (state, state.to_gradio_chatbot_public()) + (enable_btn,) * 2
############
# Layout Markdown
############
title_markdown = ("""
<div style="display: flex; align-items: center; padding: 20px; border-radius: 10px; background-color: #f0f0f0;">
<div>
<h1 style="margin: 0;">RACRO: Perceptual Decoupling for Scalable Multi-modal Reasoning via Reward-Optimized Captioning</h1>
<h2 style="margin: 10px 0;">π <a href="https://www.arxiv.org/abs/2506.04559" style="font-weight: 400;">Paper</a> | π» <a href="https://github.com/gyhdog99/RACRO2" style="font-weight: 400;">Code</a> | π€ <a href="https://huggingface.co/collections/KaiChen1998/racro-6848ec8c65b3a0bf33d0fbdb" style="font-weight: 400;">HuggingFace</a></h2>
<p style="margin: 20px 0;">
<strong>1. RACRO is designed for multi-modal reasoning, and thus, image inputs are <mark>ALWAYS</mark> necessary!</strong>
</p>
</div>
</div>
""")
learn_more_markdown = ("""
## Citation
<pre><code>@article{gou2025perceptual,
author = {Gou, Yunhao and Chen, Kai and Liu, Zhili and Hong, Lanqing and Jin, Xin and Li, Zhenguo and Kwok, James T. and Zhang, Yu},
title = {Perceptual Decoupling for Scalable Multi-modal Reasoning via Reward-Optimized Captioning},
journal = {arXiv preprint arXiv:2506.04559},
year = {2025},
}</code></pre>
""")
block_css = """
#buttons button {
min-width: min(120px,100%);
}
.message-row img {
margin: 0px !important;
}
.avatar-container img {
padding: 0px !important;
}
"""
############
# Layout Demo
############
def build_demo(embed_mode):
textbox = gr.Textbox(label="Text", show_label=False, placeholder="Enter text and then click π¬ Chat to talk with me ^v^", container=False)
with gr.Blocks(title="RACRO", theme=gr.themes.Default(), css=block_css) as demo:
state = gr.State()
if not embed_mode:
gr.HTML(title_markdown)
##############
# Chatbot
##############
with gr.Row(equal_height=True):
with gr.Column(scale=1):
imagebox = gr.Image(type="pil", label="Image")
image_process_mode = gr.Radio(
["Crop", "Resize", "Pad", "Default"],
value="Default",
label="Preprocess for non-square image", visible=False)
gr.Examples(examples=[
["./examples/image-text/demo_example.jpg", "When the canister is momentarily stopped by the spring, by what distance $d$ is the spring compressed?"],
], inputs=[imagebox, textbox], label='Examples')
with gr.Column(scale=8):
chatbot = gr.Chatbot(
type="messages",
elem_id="chatbot",
label="RACRO Chatbot",
layout="bubble",
avatar_images=["examples/user_avator.png", "examples/icon_256.png"]
)
textbox.render()
with gr.Row(elem_id="buttons") as button_row:
submit_btn = gr.Button(value="π¬ Chat", variant="primary")
# stop_btn = gr.Button(value="βΉοΈ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="π Regenerate", interactive=False)
clear_btn = gr.Button(value="ποΈ Clear", interactive=False)
if not embed_mode:
gr.Markdown(learn_more_markdown)
# Register listeners
btn_list = [regenerate_btn, clear_btn]
regenerate_btn.click(
regenerate,
[state, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list
).then(
http_bot,
[state],
[state, chatbot] + btn_list,
)
clear_btn.click(
clear_history,
None,
[state, chatbot, textbox, imagebox] + btn_list,
queue=False
)
# probably mean press enter
textbox.submit(
add_text,
[state, textbox, imagebox, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
queue=False
).then(
http_bot,
[state],
[state, chatbot] + btn_list,
)
submit_btn.click(
add_text,
[state, textbox, imagebox, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list
).then(
http_bot,
[state],
[state, chatbot] + btn_list,
)
##############
# Demo loading
##############
demo.load(
load_demo_refresh_model_list,
None,
[state],
queue=False
)
return demo
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
parser.add_argument("--embed", action="store_true")
args = parser.parse_args()
demo = build_demo(args.embed)
demo.queue(
max_size=10,
api_open=False
).launch(
favicon_path="./examples/icon_256.png",
allowed_paths=["/"],
share=args.share
)
|