Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
7c2502a
1
Parent(s):
23991fe
debug
Browse files
app.py
CHANGED
@@ -71,6 +71,26 @@ def run_llm_reasoning(caption, question, answer):
|
|
71 |
output = llm.generate([{"prompt": prompt}], sampling_params=llm_sampling)
|
72 |
return output[0].outputs[0].text
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
##########################################
|
75 |
# Gradio part
|
76 |
##########################################
|
@@ -136,43 +156,42 @@ def http_bot(state):
|
|
136 |
return
|
137 |
|
138 |
# Retrive prompt
|
139 |
-
logging.info(state.messages)
|
140 |
-
logging.info("=================")
|
141 |
-
logging.info(str(state.messages))
|
142 |
-
logging.info("=================")
|
143 |
-
logging.info(state.messages[-1])
|
144 |
-
logging.info("=================")
|
145 |
-
logging.info(state.messages[-1][-1])
|
146 |
-
logging.info("=================")
|
147 |
-
logging.info(state.messages[-1][-1][0])
|
148 |
-
logging.info("=================")
|
149 |
prompt = state.messages[-1][-1][0]
|
150 |
all_images = state.get_images(return_pil=True)[0]
|
151 |
pload = {"prompt": prompt, "images": f'List of {len(state.get_images())} images: {all_images}'}
|
152 |
logging.info(f"==== request ====\n{pload}")
|
153 |
|
154 |
-
return
|
155 |
-
|
156 |
# Construct prompt
|
157 |
cap_msgs, qa_msgs = build_messages(all_images, prompt)
|
158 |
cap_prompt = processor.apply_chat_template([cap_msgs], tokenize=False, add_generation_prompt=True)
|
159 |
qa_prompt = processor.apply_chat_template([qa_msgs], tokenize=False, add_generation_prompt=True)
|
160 |
-
|
161 |
image_tensor, _ = process_vision_info(cap_msgs)
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
-
caption_text = run_mllm_caption(image_tensor, cap_prompt, qa_prompt)
|
168 |
-
state.append_message(state.roles[1], "# Caption\n\n" + caption_text)
|
169 |
-
logging.info("# Caption\n\n" + caption_text)
|
170 |
-
yield (state, state.to_gradio_chatbot_public()) + (disable_btn,) * 2
|
171 |
|
172 |
-
final_answer = run_llm_reasoning(caption_text, QUESTION, tentative_answer)
|
173 |
-
state.append_message(state.roles[1], "# Final Response\n\n" + final_answer)
|
174 |
-
logging.info("# Final Response\n\n" + final_answer)
|
175 |
-
yield (state, state.to_gradio_chatbot_public()) + (enable_btn,) * 2
|
176 |
|
177 |
############
|
178 |
# Layout Markdown
|
|
|
71 |
output = llm.generate([{"prompt": prompt}], sampling_params=llm_sampling)
|
72 |
return output[0].outputs[0].text
|
73 |
|
74 |
+
##########################################
|
75 |
+
# Streaming
|
76 |
+
##########################################
|
77 |
+
mllm_streamer = TextIteratorStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
|
78 |
+
llm_streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
|
79 |
+
|
80 |
+
def stream_response(model, inputs, streamer, prompt, gen_kwargs):
|
81 |
+
thread = Thread(target=model.generate, kwargs=dict(
|
82 |
+
streamer=streamer,
|
83 |
+
**inputs,
|
84 |
+
**gen_kwargs
|
85 |
+
)
|
86 |
+
)
|
87 |
+
thread.start()
|
88 |
+
|
89 |
+
generated_text = prompt
|
90 |
+
for new_text in streamer:
|
91 |
+
generated_text += new_text
|
92 |
+
yield generated_text
|
93 |
+
|
94 |
##########################################
|
95 |
# Gradio part
|
96 |
##########################################
|
|
|
156 |
return
|
157 |
|
158 |
# Retrive prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
prompt = state.messages[-1][-1][0]
|
160 |
all_images = state.get_images(return_pil=True)[0]
|
161 |
pload = {"prompt": prompt, "images": f'List of {len(state.get_images())} images: {all_images}'}
|
162 |
logging.info(f"==== request ====\n{pload}")
|
163 |
|
|
|
|
|
164 |
# Construct prompt
|
165 |
cap_msgs, qa_msgs = build_messages(all_images, prompt)
|
166 |
cap_prompt = processor.apply_chat_template([cap_msgs], tokenize=False, add_generation_prompt=True)
|
167 |
qa_prompt = processor.apply_chat_template([qa_msgs], tokenize=False, add_generation_prompt=True)
|
|
|
168 |
image_tensor, _ = process_vision_info(cap_msgs)
|
169 |
+
cap_inputs = processor(text=[cap_prompt], images=image_tensor, return_tensors="pt").to(mllm.device)
|
170 |
+
qa_inputs = processor(text=[qa_prompt], images=image_tensor, return_tensors="pt").to(mllm.device)
|
171 |
+
|
172 |
+
# Step 1: Tentative Response
|
173 |
+
state.append_message(state.roles[1], "# Tentative Response\n\n▌")
|
174 |
+
try:
|
175 |
+
for generated_text in stream_response(mllm, qa_inputs, mllm_streamer, qa_prompt, mllm_sampling):
|
176 |
+
output = generated_text[len(prompt):].strip()
|
177 |
+
state.messages[-1][-1] = "# Tentative Response\n\n" + output + "▌"
|
178 |
+
yield (state, state.to_gradio_chatbot_public()) + (disable_btn,) * 2
|
179 |
+
except Exception as e:
|
180 |
+
os.system("nvidia-smi")
|
181 |
+
logging.info(traceback.print_exc())
|
182 |
+
state.messages[-1][-1] = server_error_msg
|
183 |
+
yield (state, state.to_gradio_chatbot_public()) + (enable_btn,) * 2
|
184 |
+
return
|
185 |
|
186 |
+
# caption_text = run_mllm_caption(image_tensor, cap_prompt, qa_prompt)
|
187 |
+
# state.append_message(state.roles[1], "# Caption\n\n" + caption_text)
|
188 |
+
# logging.info("# Caption\n\n" + caption_text)
|
189 |
+
# yield (state, state.to_gradio_chatbot_public()) + (disable_btn,) * 2
|
190 |
|
191 |
+
# final_answer = run_llm_reasoning(caption_text, QUESTION, tentative_answer)
|
192 |
+
# state.append_message(state.roles[1], "# Final Response\n\n" + final_answer)
|
193 |
+
# logging.info("# Final Response\n\n" + final_answer)
|
194 |
+
# yield (state, state.to_gradio_chatbot_public()) + (enable_btn,) * 2
|
195 |
|
196 |
############
|
197 |
# Layout Markdown
|