Spaces:
Runtime error
Runtime error
import gradio as gr | |
import time | |
import os | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer,TextIteratorStreamer | |
from threading import Thread | |
output_dir_merge = "Elliot4AI/Dugong-Llama2-7b-chinese" | |
# load base LLM model and tokenizer | |
model = AutoModelForCausalLM.from_pretrained( | |
output_dir_merge, | |
low_cpu_mem_usage=True, | |
torch_dtype=torch.float16, | |
load_in_8bit=True, | |
) | |
tokenizer = AutoTokenizer.from_pretrained(output_dir_merge) | |
def run_generation(user_text, top_p, temperature, top_k, max_new_tokens): | |
# Get the model and tokenizer, and tokenize the user text. | |
model_inputs = tokenizer([user_text], return_tensors="pt").input_ids.cuda() | |
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer | |
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread. | |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
inputs=model_inputs, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
temperature=float(temperature), | |
top_k=top_k | |
# repetition_penalty=2.0 | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
# Pull the generated text from the streamer, and update the model output. | |
model_output = "" | |
for new_text in streamer: | |
model_output += new_text | |
yield model_output | |
return model_output | |
def reset_textbox(): | |
return gr.update(value='') | |
with gr.Blocks() as demo: | |
with gr.Tab("PatentQA-Dugong-Llama2-7b-chinese Agent"): | |
gr.Markdown( | |
"# 🤗 PatentQA_Dugong 🔥PatentQA_Dugong Agent🔥 \n" | |
"Dugong是一个用中文微调的Llama2-7b的模型, 微调后中文回答更顺畅 " | |
"目前采用流式输出" | |
"🤗💛" | |
) | |
# gr.Markdown("PatentQA_Dugong Agent: Dugong是一个用中文微调的Llama2-7b的模型, 微调后中文回答更顺畅,并且具有丰富英业达专利知识的人工智能助手,可以回答专利的相关信息,目前恢复速度稍慢") | |
with gr.Row(): | |
with gr.Column(scale=4): | |
user_text = gr.Textbox( | |
placeholder="请输入你的问题", | |
label="问题" | |
) | |
model_output = gr.Textbox(label="回答", lines=10, interactive=False) | |
button_submit = gr.Button(value="提交") | |
clear = gr.ClearButton([user_text, model_output]) | |
with gr.Column(scale=1): | |
max_new_tokens = gr.Slider( | |
minimum=1, maximum=1000, value=250, step=1, interactive=True, label="最大输出token数量", | |
) | |
top_p = gr.Slider( | |
minimum=0.05, maximum=1.0, value=0.95, step=0.05, interactive=True, label="Top-p (nucleus sampling)", | |
) | |
top_k = gr.Slider( | |
minimum=1, maximum=50, value=50, step=1, interactive=True, label="Top-k", | |
) | |
temperature = gr.Slider( | |
minimum=0.1, maximum=5.0, value=0.8, step=0.1, interactive=True, label="温度", | |
) | |
user_text.submit(run_generation, [user_text, top_p, temperature, top_k, max_new_tokens], model_output) | |
button_submit.click(run_generation, [user_text, top_p, temperature, top_k, max_new_tokens], model_output) | |
demo.queue(max_size=32) | |
demo.launch(enable_queue=True) |