Elliot4AI's picture
Update app.py
b7491d2
import gradio as gr
import time
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer,TextIteratorStreamer
from threading import Thread
output_dir_merge = "Elliot4AI/Dugong-Llama2-7b-chinese"
# load base LLM model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
output_dir_merge,
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
load_in_8bit=True,
)
tokenizer = AutoTokenizer.from_pretrained(output_dir_merge)
def run_generation(user_text, top_p, temperature, top_k, max_new_tokens):
# Get the model and tokenizer, and tokenize the user text.
model_inputs = tokenizer([user_text], return_tensors="pt").input_ids.cuda()
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
inputs=model_inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
temperature=float(temperature),
top_k=top_k
# repetition_penalty=2.0
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
# Pull the generated text from the streamer, and update the model output.
model_output = ""
for new_text in streamer:
model_output += new_text
yield model_output
return model_output
def reset_textbox():
return gr.update(value='')
with gr.Blocks() as demo:
with gr.Tab("PatentQA-Dugong-Llama2-7b-chinese Agent"):
gr.Markdown(
"# 🤗 PatentQA_Dugong 🔥PatentQA_Dugong Agent🔥 \n"
"Dugong是一个用中文微调的Llama2-7b的模型, 微调后中文回答更顺畅 "
"目前采用流式输出"
"🤗💛"
)
# gr.Markdown("PatentQA_Dugong Agent: Dugong是一个用中文微调的Llama2-7b的模型, 微调后中文回答更顺畅,并且具有丰富英业达专利知识的人工智能助手,可以回答专利的相关信息,目前恢复速度稍慢")
with gr.Row():
with gr.Column(scale=4):
user_text = gr.Textbox(
placeholder="请输入你的问题",
label="问题"
)
model_output = gr.Textbox(label="回答", lines=10, interactive=False)
button_submit = gr.Button(value="提交")
clear = gr.ClearButton([user_text, model_output])
with gr.Column(scale=1):
max_new_tokens = gr.Slider(
minimum=1, maximum=1000, value=250, step=1, interactive=True, label="最大输出token数量",
)
top_p = gr.Slider(
minimum=0.05, maximum=1.0, value=0.95, step=0.05, interactive=True, label="Top-p (nucleus sampling)",
)
top_k = gr.Slider(
minimum=1, maximum=50, value=50, step=1, interactive=True, label="Top-k",
)
temperature = gr.Slider(
minimum=0.1, maximum=5.0, value=0.8, step=0.1, interactive=True, label="温度",
)
user_text.submit(run_generation, [user_text, top_p, temperature, top_k, max_new_tokens], model_output)
button_submit.click(run_generation, [user_text, top_p, temperature, top_k, max_new_tokens], model_output)
demo.queue(max_size=32)
demo.launch(enable_queue=True)