import gradio as gr import time import os import torch from transformers import AutoModelForCausalLM, AutoTokenizer,TextIteratorStreamer from threading import Thread output_dir_merge = "Elliot4AI/Dugong-Llama2-7b-chinese" # load base LLM model and tokenizer model = AutoModelForCausalLM.from_pretrained( output_dir_merge, low_cpu_mem_usage=True, torch_dtype=torch.float16, load_in_8bit=True, ) tokenizer = AutoTokenizer.from_pretrained(output_dir_merge) def run_generation(user_text, top_p, temperature, top_k, max_new_tokens): # Get the model and tokenizer, and tokenize the user text. model_inputs = tokenizer([user_text], return_tensors="pt").input_ids.cuda() # Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer # in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread. streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( inputs=model_inputs, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, temperature=float(temperature), top_k=top_k # repetition_penalty=2.0 ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() # Pull the generated text from the streamer, and update the model output. model_output = "" for new_text in streamer: model_output += new_text yield model_output return model_output def reset_textbox(): return gr.update(value='') with gr.Blocks() as demo: with gr.Tab("PatentQA-Dugong-Llama2-7b-chinese Agent"): gr.Markdown( "# 🤗 PatentQA_Dugong 🔥PatentQA_Dugong Agent🔥 \n" "Dugong是一个用中文微调的Llama2-7b的模型, 微调后中文回答更顺畅 " "目前采用流式输出" "🤗💛" ) # gr.Markdown("PatentQA_Dugong Agent: Dugong是一个用中文微调的Llama2-7b的模型, 微调后中文回答更顺畅,并且具有丰富英业达专利知识的人工智能助手,可以回答专利的相关信息,目前恢复速度稍慢") with gr.Row(): with gr.Column(scale=4): user_text = gr.Textbox( placeholder="请输入你的问题", label="问题" ) model_output = gr.Textbox(label="回答", lines=10, interactive=False) button_submit = gr.Button(value="提交") clear = gr.ClearButton([user_text, model_output]) with gr.Column(scale=1): max_new_tokens = gr.Slider( minimum=1, maximum=1000, value=250, step=1, interactive=True, label="最大输出token数量", ) top_p = gr.Slider( minimum=0.05, maximum=1.0, value=0.95, step=0.05, interactive=True, label="Top-p (nucleus sampling)", ) top_k = gr.Slider( minimum=1, maximum=50, value=50, step=1, interactive=True, label="Top-k", ) temperature = gr.Slider( minimum=0.1, maximum=5.0, value=0.8, step=0.1, interactive=True, label="温度", ) user_text.submit(run_generation, [user_text, top_p, temperature, top_k, max_new_tokens], model_output) button_submit.click(run_generation, [user_text, top_p, temperature, top_k, max_new_tokens], model_output) demo.queue(max_size=32) demo.launch(enable_queue=True)