Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -11,10 +11,7 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
11 |
model.to(device)
|
12 |
|
13 |
# Force Hebrew transcription
|
14 |
-
forced_decoder_ids = processor.get_decoder_prompt_ids(
|
15 |
-
language="he",
|
16 |
-
task="transcribe"
|
17 |
-
)
|
18 |
|
19 |
stop_processing = False
|
20 |
def stop():
|
@@ -22,40 +19,30 @@ def stop():
|
|
22 |
stop_processing = True
|
23 |
|
24 |
def transcribe_audio(audio_file):
|
25 |
-
"""
|
26 |
-
Process up to 3600 seconds of the audio (1 hour) in 25-second chunks.
|
27 |
-
Return partial text chunk by chunk (generator).
|
28 |
-
"""
|
29 |
global stop_processing
|
30 |
stop_processing = False
|
31 |
|
32 |
-
# 1) Load at 16kHz
|
33 |
waveform, sr = librosa.load(audio_file, sr=16000)
|
34 |
-
|
35 |
-
# 2) Truncate to the first 3600 seconds (1 hour)
|
36 |
-
time_limit_s = 3600
|
37 |
if len(waveform) > sr * time_limit_s:
|
38 |
waveform = waveform[: sr * time_limit_s]
|
39 |
|
40 |
-
#
|
41 |
max_audio_sec = 60 * 60
|
42 |
if len(waveform) > sr * max_audio_sec:
|
43 |
waveform = waveform[: sr * max_audio_sec]
|
44 |
|
45 |
-
#
|
46 |
chunk_duration_s = 25
|
47 |
chunk_size = sr * chunk_duration_s
|
48 |
chunks = []
|
49 |
for start_idx in range(0, len(waveform), chunk_size):
|
50 |
chunk = waveform[start_idx : start_idx + chunk_size]
|
51 |
-
# Skip very small final pieces (less than 1 second)
|
52 |
if len(chunk) < sr * 1:
|
53 |
continue
|
54 |
chunks.append(chunk)
|
55 |
|
56 |
partial_text = ""
|
57 |
-
|
58 |
-
# 4) Transcribe chunk by chunk
|
59 |
for i, chunk in enumerate(chunks):
|
60 |
if stop_processing:
|
61 |
yield "⚠️ Stopped by User ⚠️"
|
@@ -75,7 +62,7 @@ def transcribe_audio(audio_file):
|
|
75 |
predicted_ids = model.generate(
|
76 |
input_features,
|
77 |
attention_mask=attention_mask,
|
78 |
-
max_new_tokens=444,
|
79 |
do_sample=False,
|
80 |
forced_decoder_ids=forced_decoder_ids
|
81 |
)
|
@@ -83,10 +70,8 @@ def transcribe_audio(audio_file):
|
|
83 |
text_chunk = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
84 |
partial_text += text_chunk + "\n"
|
85 |
|
86 |
-
# Stream updated partial text
|
87 |
yield partial_text
|
88 |
|
89 |
-
# Build Gradio UI
|
90 |
with gr.Blocks() as demo:
|
91 |
gr.Markdown("## Hebrew Whisper (up to 1 hour, 25-second chunks)")
|
92 |
|
@@ -96,9 +81,8 @@ with gr.Blocks() as demo:
|
|
96 |
start_btn = gr.Button("Start Transcription")
|
97 |
stop_btn = gr.Button("Stop Processing", variant="stop")
|
98 |
|
99 |
-
# Stream chunk-by-chunk without a progress bar
|
100 |
start_btn.click(transcribe_audio, inputs=audio_input, outputs=output_text)
|
101 |
stop_btn.click(stop)
|
102 |
|
103 |
-
#
|
104 |
-
demo.launch(
|
|
|
11 |
model.to(device)
|
12 |
|
13 |
# Force Hebrew transcription
|
14 |
+
forced_decoder_ids = processor.get_decoder_prompt_ids(language="he", task="transcribe")
|
|
|
|
|
|
|
15 |
|
16 |
stop_processing = False
|
17 |
def stop():
|
|
|
19 |
stop_processing = True
|
20 |
|
21 |
def transcribe_audio(audio_file):
|
|
|
|
|
|
|
|
|
22 |
global stop_processing
|
23 |
stop_processing = False
|
24 |
|
|
|
25 |
waveform, sr = librosa.load(audio_file, sr=16000)
|
26 |
+
time_limit_s = 3600 # 1 hour
|
|
|
|
|
27 |
if len(waveform) > sr * time_limit_s:
|
28 |
waveform = waveform[: sr * time_limit_s]
|
29 |
|
30 |
+
# Safety limit (just in case)
|
31 |
max_audio_sec = 60 * 60
|
32 |
if len(waveform) > sr * max_audio_sec:
|
33 |
waveform = waveform[: sr * max_audio_sec]
|
34 |
|
35 |
+
# Split into 25-second chunks
|
36 |
chunk_duration_s = 25
|
37 |
chunk_size = sr * chunk_duration_s
|
38 |
chunks = []
|
39 |
for start_idx in range(0, len(waveform), chunk_size):
|
40 |
chunk = waveform[start_idx : start_idx + chunk_size]
|
|
|
41 |
if len(chunk) < sr * 1:
|
42 |
continue
|
43 |
chunks.append(chunk)
|
44 |
|
45 |
partial_text = ""
|
|
|
|
|
46 |
for i, chunk in enumerate(chunks):
|
47 |
if stop_processing:
|
48 |
yield "⚠️ Stopped by User ⚠️"
|
|
|
62 |
predicted_ids = model.generate(
|
63 |
input_features,
|
64 |
attention_mask=attention_mask,
|
65 |
+
max_new_tokens=444,
|
66 |
do_sample=False,
|
67 |
forced_decoder_ids=forced_decoder_ids
|
68 |
)
|
|
|
70 |
text_chunk = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
71 |
partial_text += text_chunk + "\n"
|
72 |
|
|
|
73 |
yield partial_text
|
74 |
|
|
|
75 |
with gr.Blocks() as demo:
|
76 |
gr.Markdown("## Hebrew Whisper (up to 1 hour, 25-second chunks)")
|
77 |
|
|
|
81 |
start_btn = gr.Button("Start Transcription")
|
82 |
stop_btn = gr.Button("Stop Processing", variant="stop")
|
83 |
|
|
|
84 |
start_btn.click(transcribe_audio, inputs=audio_input, outputs=output_text)
|
85 |
stop_btn.click(stop)
|
86 |
|
87 |
+
# Replace `enable_api=True` with `api_open=True`
|
88 |
+
demo.launch(api_open=True)
|