Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -21,9 +21,9 @@ def stop():
|
|
21 |
global stop_processing
|
22 |
stop_processing = True
|
23 |
|
24 |
-
def
|
25 |
"""
|
26 |
-
Process
|
27 |
Return partial text chunk by chunk (generator).
|
28 |
"""
|
29 |
global stop_processing
|
@@ -32,22 +32,23 @@ def transcribe_3600_seconds(audio_file):
|
|
32 |
# 1) Load at 16kHz
|
33 |
waveform, sr = librosa.load(audio_file, sr=16000)
|
34 |
|
35 |
-
# 2) Truncate to the first
|
36 |
-
time_limit_s =
|
37 |
if len(waveform) > sr * time_limit_s:
|
38 |
waveform = waveform[: sr * time_limit_s]
|
39 |
|
40 |
-
#
|
41 |
max_audio_sec = 60 * 60
|
42 |
if len(waveform) > sr * max_audio_sec:
|
43 |
waveform = waveform[: sr * max_audio_sec]
|
44 |
|
45 |
-
# 3) Split that
|
46 |
chunk_duration_s = 25
|
47 |
chunk_size = sr * chunk_duration_s
|
48 |
chunks = []
|
49 |
for start_idx in range(0, len(waveform), chunk_size):
|
50 |
chunk = waveform[start_idx : start_idx + chunk_size]
|
|
|
51 |
if len(chunk) < sr * 1:
|
52 |
continue
|
53 |
chunks.append(chunk)
|
@@ -74,7 +75,7 @@ def transcribe_3600_seconds(audio_file):
|
|
74 |
predicted_ids = model.generate(
|
75 |
input_features,
|
76 |
attention_mask=attention_mask,
|
77 |
-
max_new_tokens=444,
|
78 |
do_sample=False,
|
79 |
forced_decoder_ids=forced_decoder_ids
|
80 |
)
|
@@ -82,15 +83,22 @@ def transcribe_3600_seconds(audio_file):
|
|
82 |
text_chunk = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
83 |
partial_text += text_chunk + "\n"
|
84 |
|
|
|
85 |
yield partial_text
|
86 |
|
87 |
-
# Build Gradio UI
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
)
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
|
|
|
|
21 |
global stop_processing
|
22 |
stop_processing = True
|
23 |
|
24 |
+
def transcribe_audio(audio_file):
|
25 |
"""
|
26 |
+
Process up to 3600 seconds of the audio (1 hour) in 25-second chunks.
|
27 |
Return partial text chunk by chunk (generator).
|
28 |
"""
|
29 |
global stop_processing
|
|
|
32 |
# 1) Load at 16kHz
|
33 |
waveform, sr = librosa.load(audio_file, sr=16000)
|
34 |
|
35 |
+
# 2) Truncate to the first 3600 seconds (1 hour)
|
36 |
+
time_limit_s = 3600
|
37 |
if len(waveform) > sr * time_limit_s:
|
38 |
waveform = waveform[: sr * time_limit_s]
|
39 |
|
40 |
+
# Additional safety limit if total is somehow over 60 minutes
|
41 |
max_audio_sec = 60 * 60
|
42 |
if len(waveform) > sr * max_audio_sec:
|
43 |
waveform = waveform[: sr * max_audio_sec]
|
44 |
|
45 |
+
# 3) Split that audio into 25-second chunks
|
46 |
chunk_duration_s = 25
|
47 |
chunk_size = sr * chunk_duration_s
|
48 |
chunks = []
|
49 |
for start_idx in range(0, len(waveform), chunk_size):
|
50 |
chunk = waveform[start_idx : start_idx + chunk_size]
|
51 |
+
# Skip very small final pieces (less than 1 second)
|
52 |
if len(chunk) < sr * 1:
|
53 |
continue
|
54 |
chunks.append(chunk)
|
|
|
75 |
predicted_ids = model.generate(
|
76 |
input_features,
|
77 |
attention_mask=attention_mask,
|
78 |
+
max_new_tokens=444, # keep under total token limit
|
79 |
do_sample=False,
|
80 |
forced_decoder_ids=forced_decoder_ids
|
81 |
)
|
|
|
83 |
text_chunk = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
84 |
partial_text += text_chunk + "\n"
|
85 |
|
86 |
+
# Stream updated partial text
|
87 |
yield partial_text
|
88 |
|
89 |
+
# Build Gradio UI
|
90 |
+
with gr.Blocks() as demo:
|
91 |
+
gr.Markdown("## Hebrew Whisper (up to 1 hour, 25-second chunks)")
|
92 |
+
|
93 |
+
audio_input = gr.Audio(type="filepath", label="Upload Audio (Truncate to 1 hour)")
|
94 |
+
output_text = gr.Textbox(label="Partial Transcription")
|
95 |
+
|
96 |
+
start_btn = gr.Button("Start Transcription")
|
97 |
+
stop_btn = gr.Button("Stop Processing", variant="stop")
|
98 |
+
|
99 |
+
# Stream chunk-by-chunk without a progress bar
|
100 |
+
start_btn.click(transcribe_audio, inputs=audio_input, outputs=output_text)
|
101 |
+
stop_btn.click(stop)
|
102 |
|
103 |
+
# Enable API by setting enable_api=True
|
104 |
+
demo.launch(enable_api=True)
|