Spaces:
Sleeping
Sleeping
File size: 6,541 Bytes
9b968be ea53bcc 9b968be ea53bcc 9b968be ea53bcc 9b968be 91ac79b ad0c1dd 524c9af 9b968be ecae6dc ea53bcc 9b968be ea53bcc 63b55ed ad0c1dd 63b55ed ad0c1dd 57babb1 63b55ed d91e2c5 ea53bcc 9b968be 3600cbf ab20d84 75a11b1 9b968be d91e2c5 75a11b1 d91e2c5 5f1c654 75a11b1 524c9af 75a11b1 524c9af 75a11b1 ea53bcc b24890a ea53bcc 75a11b1 ea53bcc 63b55ed ea53bcc b24890a ea53bcc b24890a 8c5b0dd b24890a 8c5b0dd ea53bcc b24890a 63b55ed b24890a d91e2c5 b24890a ea53bcc b24890a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import streamlit as st
import pandas as pd
import openai
import joblib
from PIL import Image
import requests
from io import BytesIO
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import LabelEncoder
from huggingface_hub import hf_hub_download
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
import torch
from datetime import datetime
# Dataset loading function with caching
@st.cache_data
def load_datasets():
try:
with st.spinner('Loading dataset...'):
original_data = pd.read_csv('CTP_Model1.csv', low_memory=False)
return original_data
except Exception as e:
st.error(f"Error loading dataset: {str(e)}")
raise e
def load_image(image_file):
return Image.open(image_file)
def classify_image(image):
try:
# Load the model and feature extractor
model_name = "dima806/car_models_image_detection"
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = AutoModelForImageClassification.from_pretrained(model_name)
# Preprocess the image
inputs = feature_extractor(images=image, return_tensors="pt")
# Perform inference
with torch.no_grad():
outputs = model(**inputs)
# Get the predicted class
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
# Get the class label and score
predicted_class_label = model.config.id2label[predicted_class_idx]
score = torch.nn.functional.softmax(logits, dim=-1)[0, predicted_class_idx].item()
# Return the top prediction
return [{'label': predicted_class_label, 'score': score}]
except Exception as e:
st.error(f"Classification error: {e}")
return None
def get_car_overview(brand, model, year):
prompt = f"Provide an overview of the following car:\nYear: {year}\nMake: {brand}\nModel: {model}\n"
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}]
)
return response.choices[0].message['content']
def load_model_and_encodings():
try:
with st.spinner('Loading model...'):
model_content = hf_hub_download(repo_id="EdBoy2202/car_prediction_model", filename="car_price_modelv3.pkl")
model = joblib.load(model_content)
return model
except Exception as e:
st.error(f"Error loading model: {str(e)}")
raise e
def predict_price(model, brand, model_name, year):
# Create a dictionary with default values
input_data = {
'year': year,
'make': brand,
'model': model_name,
'trim': 'Base', # Default trim
'condition': 'Used', # Default condition
'fuel': 'Gasoline', # Default fuel type
'odometer': year * 12000, # Estimate based on year and average annual mileage
'title_status': 'Clean', # Default title status
'transmission': 'Automatic', # Default transmission
'drive': 'Fwd', # Default drive
'size': 'Mid-Size', # Default size
'type': 'Sedan', # Default type
'paint_color': 'White' # Default color
}
# Calculate age
current_year = datetime.now().year
input_data['age'] = current_year - year
input_data['age_squared'] = input_data['age'] ** 2
# Prepare the input for the model
input_df = pd.DataFrame([input_data])
# Make sure to only include columns that the model expects
model_columns = model.feature_names_in_
input_df = input_df[model_columns]
# Predict the price
predicted_price = model.predict(input_df)
return predicted_price[0]
# Streamlit App
st.title("Auto Appraise")
st.write("Upload a car image or take a picture to get its brand, model, overview, and expected price!")
# Load model and encodings
model = load_model_and_encodings()
# Initialize OpenAI API key
openai.api_key = st.secrets["GPT_TOKEN"]
# File uploader for image
uploaded_file = st.file_uploader("Choose a car image", type=["jpg", "jpeg", "png"])
# Camera input as an alternative (optional)
camera_image = st.camera_input("Or take a picture of the car")
# Process the image (either uploaded or from camera)
image = None
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.write("Image uploaded successfully.")
elif camera_image is not None:
image = Image.open(camera_image)
st.write("Image captured successfully.")
if image is not None:
st.image(image, caption='Processed Image', use_container_width=True)
# Classify the car image
with st.spinner('Analyzing image...'):
car_classifications = classify_image(image)
if car_classifications:
st.write("Image classification successful.")
st.subheader("Car Classification Results:")
for classification in car_classifications:
st.write(f"Model: {classification['label']}")
st.write(f"Confidence: {classification['score']*100:.2f}%")
# Use the top prediction for further processing
top_prediction = car_classifications[0]['label']
brand, model_name = top_prediction.split(' ', 1)
st.write(f"Identified Car: {brand} {model_name}")
# Get additional information using GPT-3.5-turbo
current_year = datetime.now().year
overview = get_car_overview(brand, model_name, current_year)
st.write("Car Overview:")
st.write(overview)
# Interactive Price Prediction
st.subheader("Price Prediction Over Time")
selected_years = st.slider("Select range of years for price prediction",
min_value=2000, max_value=2023, value=(2010, 2023))
years = np.arange(selected_years[0], selected_years[1] + 1)
predicted_prices = []
for year in years:
price = predict_price(model, brand, model_name, year)
predicted_prices.append(price)
# Plotting the results
plt.figure(figsize=(10, 5))
plt.plot(years, predicted_prices, marker='o')
plt.title(f"Predicted Price of {brand} {model_name} Over Time")
plt.xlabel("Year")
plt.ylabel("Predicted Price ($)")
plt.grid()
st.pyplot(plt)
else:
st.error("Could not classify the image. Please try again with a different image.")
else:
st.write("Please upload an image or take a picture to proceed.") |