Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,6 +10,7 @@ import numpy as np
|
|
| 10 |
from sklearn.preprocessing import LabelEncoder
|
| 11 |
from huggingface_hub import hf_hub_download
|
| 12 |
import base64
|
|
|
|
| 13 |
|
| 14 |
# Dataset loading function with caching
|
| 15 |
@st.cache_data
|
|
@@ -33,37 +34,18 @@ def load_image(image_file):
|
|
| 33 |
|
| 34 |
|
| 35 |
def classify_image(image):
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
image.save(img_byte_arr, format='PNG')
|
| 39 |
-
img_byte_arr = img_byte_arr.getvalue()
|
| 40 |
-
|
| 41 |
-
# Encode image to base64
|
| 42 |
-
encoded_image = base64.b64encode(img_byte_arr).decode('ascii')
|
| 43 |
-
|
| 44 |
-
headers = {
|
| 45 |
-
"Authorization": f"Bearer {HUGGINGFACE_API_KEY}",
|
| 46 |
-
"Content-Type": "application/json"
|
| 47 |
-
}
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
)
|
| 59 |
-
response.raise_for_status() # Raises an HTTPError for bad responses
|
| 60 |
-
return response.json()
|
| 61 |
-
except requests.exceptions.RequestException as e:
|
| 62 |
-
st.error(f"Image classification failed: {e}")
|
| 63 |
-
if response.text:
|
| 64 |
-
st.error(f"API Response: {response.text}")
|
| 65 |
-
return None
|
| 66 |
-
|
| 67 |
def find_closest_match(df, brand, model):
|
| 68 |
match = df[(df['Make'].str.contains(brand, case=False)) & (df['Model'].str.contains(model, case=False))]
|
| 69 |
if not match.empty:
|
|
@@ -139,11 +121,7 @@ if camera_image is not None:
|
|
| 139 |
car_info = classify_image(image)
|
| 140 |
|
| 141 |
if car_info:
|
| 142 |
-
|
| 143 |
-
model_name = car_info.get('model', None)
|
| 144 |
-
|
| 145 |
-
if brand and model_name:
|
| 146 |
-
st.write(f"Identified Car: {brand} {model_name}")
|
| 147 |
|
| 148 |
# Find the closest match in the CSV
|
| 149 |
match = find_closest_match(df, brand, model_name)
|
|
|
|
| 10 |
from sklearn.preprocessing import LabelEncoder
|
| 11 |
from huggingface_hub import hf_hub_download
|
| 12 |
import base64
|
| 13 |
+
from transformers import ViTImageProcessor, ViTForImageClassification
|
| 14 |
|
| 15 |
# Dataset loading function with caching
|
| 16 |
@st.cache_data
|
|
|
|
| 34 |
|
| 35 |
|
| 36 |
def classify_image(image):
|
| 37 |
+
processor = ViTImageProcessor.from_pretrained("dima806/car_models_image_detection")
|
| 38 |
+
model = ViTForImageClassification.from_pretrained("dima806/car_models_image_detection")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 41 |
+
|
| 42 |
+
with torch.no_grad():
|
| 43 |
+
outputs = model(**inputs)
|
| 44 |
+
|
| 45 |
+
logits = outputs.logits
|
| 46 |
+
predicted_class_idx = logits.argmax(-1).item()
|
| 47 |
+
|
| 48 |
+
return model.config.id2label[predicted_class_idx]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
def find_closest_match(df, brand, model):
|
| 50 |
match = df[(df['Make'].str.contains(brand, case=False)) & (df['Model'].str.contains(model, case=False))]
|
| 51 |
if not match.empty:
|
|
|
|
| 121 |
car_info = classify_image(image)
|
| 122 |
|
| 123 |
if car_info:
|
| 124 |
+
st.write(f"Identified Car: {car_info}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
# Find the closest match in the CSV
|
| 127 |
match = find_closest_match(df, brand, model_name)
|