File size: 7,437 Bytes
9b968be
 
ea53bcc
9b968be
ea53bcc
 
 
9b968be
ea53bcc
9b968be
91ac79b
ebe1621
5fdb85a
 
 
9b968be
ecae6dc
 
 
 
 
 
 
 
 
 
 
 
ea53bcc
 
9b968be
ea53bcc
63b55ed
ebe1621
 
63b55ed
ebe1621
 
63b55ed
ebe1621
 
57babb1
63b55ed
 
 
 
ea53bcc
5fdb85a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b968be
ea53bcc
ecae6dc
ea53bcc
 
 
 
 
9b968be
 
 
 
3600cbf
ab20d84
ea53bcc
ecae6dc
9b968be
 
ecae6dc
 
9b968be
 
 
 
 
 
 
 
 
 
 
 
 
ea53bcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63b55ed
ea53bcc
 
 
 
 
 
b43ae44
ea53bcc
 
63b55ed
 
b43ae44
63b55ed
 
 
 
ebe1621
63b55ed
 
 
 
 
 
ecae6dc
299b5f0
63b55ed
299b5f0
 
 
5fdb85a
 
 
 
299b5f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fdb85a
 
299b5f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fdb85a
299b5f0
 
 
 
 
9b968be
299b5f0
 
63b55ed
ea53bcc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import streamlit as st
import pandas as pd
import openai
import joblib
from PIL import Image
import requests
from io import BytesIO
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import LabelEncoder
from huggingface_hub import hf_hub_download
from transformers import pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import re

# Dataset loading function with caching
@st.cache_data
def load_datasets():
    try:
        with st.spinner('Loading dataset...'):
            original_data = pd.read_csv('CTP_Model1.csv', low_memory=False)
            original_data.columns = original_data.columns.str.strip().str.capitalize()
            return original_data
    except Exception as e:
        st.error(f"Error loading dataset: {str(e)}")
        raise e

def load_image(image_file):
    return Image.open(image_file)

def classify_image(image):
    try:
        # Create a pipeline for image classification
        classifier = pipeline('image-classification', model="dima806/car_models_image_detection", device=-1)  # Use -1 for CPU, or 0 for GPU if available
        
        # Classify the image
        results = classifier(image)
        
        # Return top 5 predictions
        return results[:5]
    
    except Exception as e:
        st.error(f"Classification error: {e}")
        return None

def find_closest_match(df, brand, model):
    # Combine brand and model names from the dataset
    df['full_name'] = df['Make'] + ' ' + df['Model']
    
    # Create a list of all car names
    car_names = df['full_name'].tolist()
    
    # Add the query car name
    query_car = f"{brand} {model}"
    car_names.append(query_car)
    
    # Create TF-IDF vectorizer
    vectorizer = TfidfVectorizer()
    tfidf_matrix = vectorizer.fit_transform(car_names)
    
    # Compute cosine similarity
    cosine_similarities = cosine_similarity(tfidf_matrix[-1], tfidf_matrix[:-1]).flatten()
    
    # Get the index of the most similar car
    most_similar_index = cosine_similarities.argmax()
    
    # Return the most similar car's data
    return df.iloc[most_similar_index]

def get_car_overview(car_data):
    prompt = f"Provide an overview of the following car:\nYear: {car_data['Year']}\nMake: {car_data['Make']}\nModel: {car_data['Model']}\nTrim: {car_data['Trim']}\nPrice: ${car_data['Price']}\nCondition: {car_data['Condition']}\n"
    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=[{"role": "user", "content": prompt}]
    )
    return response.choices[0].message['content']

def load_model_and_encodings():
    try:
        with st.spinner('Loading model...'):
            model_content = hf_hub_download(repo_id="EdBoy2202/car_prediction_model", filename="car_price_modelv3.pkl")
            model = joblib.load(model_content)

        original_data = load_datasets()
        
        label_encoders = {}
        categorical_features = ['Make', 'Model', 'Condition', 'Fuel', 'Title_status', 
                                'Transmission', 'Drive', 'Size', 'Type', 'Paint_color']
        
        for feature in categorical_features:
            if feature in original_data.columns:
                le = LabelEncoder()
                unique_values = original_data[feature].fillna('unknown').str.strip().unique()
                le.fit(unique_values)
                label_encoders[feature.lower()] = le
        
        return model, label_encoders
    except Exception as e:
        st.error(f"Error loading model: {str(e)}")
        raise e

def predict_price(model, encoders, user_input):
    encoded_features = {feature: encoders[feature].transform([value])[0] if value in encoders[feature] else 0 
                        for feature, value in user_input.items()}
    input_data = pd.DataFrame([encoded_features])
    predicted_price = model.predict(input_data)
    return predicted_price[0]

# Streamlit App
st.title("Auto Appraise")
st.write("Capture a car image using your camera or upload an image to get its brand, model, overview, and expected price!")

# Load model and encoders
model, label_encoders = load_model_and_encodings()

# Initialize OpenAI API key
openai.api_key = st.secrets["GPT_TOKEN"]

# Camera input for taking photo
camera_image = st.camera_input("Take a picture of the car!")

if camera_image is not None:
    image = load_image(camera_image)
    st.image(image, caption='Captured Image.', use_container_width=True)

    # Classify the car image
    with st.spinner('Analyzing image...'):
        car_classifications = classify_image(image)
    
    if car_classifications:
        st.subheader("Car Classification Results:")
        for classification in car_classifications:
            st.write(f"Model: {classification['label']}")
            st.write(f"Confidence: {classification['score']*100:.2f}%")
        
        # Use the top prediction for further processing
        top_prediction = car_classifications[0]['label']
        brand, model_name = top_prediction.split(' ', 1)
        
        st.write(f"Identified Car: {brand} {model_name}")

        # Find the closest match in the CSV
        df = load_datasets()
        match = find_closest_match(df, brand, model_name)
        if match is not None:
            st.write("Closest Match Found:")
            st.write(f"Make: {match['Make']}")
            st.write(f"Model: {match['Model']}")
            st.write(f"Year: {match['Year']}")
            st.write(f"Price: ${match['Price']}")

            # Get additional information using GPT-3.5-turbo
            overview = get_car_overview(match)
            st.write("Car Overview:")
            st.write(overview)

            # Interactive Price Prediction
            st.subheader("Price Prediction Over Time")
            selected_years = st.slider("Select range of years for price prediction", 
                                         min_value=2000, max_value=2023, value=(2010, 2023))

            years = np.arange(selected_years[0], selected_years[1] + 1)
            predicted_prices = []

            for year in years:
                user_input = {
                    'Make': match['Make'],
                    'Model': match['Model'],
                    'Condition': match['Condition'],
                    'Fuel': match['Fuel'],
                    'Title_status': match['Title_status'],
                    'Transmission': match['Transmission'],
                    'Drive': match['Drive'],
                    'Size': match['Size'],
                    'Type': match['Type'],
                    'Paint_color': match['Paint_color'],
                    'Year': year
                }
                
                price = predict_price(model, label_encoders, user_input)
                predicted_prices.append(price)

            # Plotting the results
            plt.figure(figsize=(10, 5))
            plt.plot(years, predicted_prices, marker='o')
            plt.title(f"Predicted Price of {match['Make']} {match['Model']} Over Time")
            plt.xlabel("Year")
            plt.ylabel("Predicted Price ($)")
            plt.grid()
            st.pyplot(plt)

        else:
            st.write("No match found in the database.")
    else:
        st.error("Could not classify the image. Please try again with a different image.")
else:
    st.write("Please take a picture of the car to proceed.")