Echo-ai
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,18 @@
|
|
1 |
import os
|
2 |
import requests
|
|
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
from fastapi.middleware.cors import CORSMiddleware
|
5 |
-
from fastapi.responses import HTMLResponse
|
6 |
from llama_cpp import Llama
|
7 |
from pydantic import BaseModel
|
8 |
import uvicorn
|
|
|
|
|
9 |
|
10 |
# Configuration
|
11 |
-
MODEL_URL = "https://huggingface.co/unsloth/DeepSeek-R1-Distill-Qwen-1.5B-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-
|
12 |
-
MODEL_NAME = "DeepSeek-R1-Distill-Qwen-1.5B-
|
13 |
MODEL_DIR = "model"
|
14 |
MODEL_PATH = os.path.join(MODEL_DIR, MODEL_NAME)
|
15 |
|
@@ -33,8 +36,8 @@ else:
|
|
33 |
# Initialize FastAPI
|
34 |
app = FastAPI(
|
35 |
title="DeepSeek-R1 OpenAI-Compatible API",
|
36 |
-
description="OpenAI-compatible API
|
37 |
-
version="
|
38 |
)
|
39 |
|
40 |
# CORS Configuration
|
@@ -45,36 +48,68 @@ app.add_middleware(
|
|
45 |
allow_headers=["*"],
|
46 |
)
|
47 |
|
48 |
-
#
|
49 |
-
print("Loading model...")
|
50 |
try:
|
51 |
llm = Llama(
|
52 |
model_path=MODEL_PATH,
|
53 |
-
n_ctx=
|
54 |
-
n_threads=
|
|
|
55 |
n_gpu_layers=0,
|
|
|
56 |
verbose=False
|
57 |
)
|
58 |
-
print("Model loaded
|
59 |
except Exception as e:
|
60 |
raise RuntimeError(f"Failed to load model: {str(e)}")
|
61 |
|
62 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
@app.get("/", response_class=HTMLResponse)
|
64 |
async def root():
|
65 |
return f"""
|
66 |
<html>
|
67 |
<head>
|
68 |
-
<title>DeepSeek-R1
|
69 |
<style>
|
70 |
body {{ font-family: Arial, sans-serif; max-width: 800px; margin: 20px auto; padding: 0 20px; }}
|
71 |
.warning {{ color: #dc3545; background: #ffeef0; padding: 15px; border-radius: 5px; }}
|
|
|
72 |
a {{ color: #007bff; text-decoration: none; }}
|
73 |
code {{ background: #f8f9fa; padding: 2px 4px; border-radius: 4px; }}
|
74 |
</style>
|
75 |
</head>
|
76 |
<body>
|
77 |
-
<h1>DeepSeek-R1
|
78 |
|
79 |
<div class="warning">
|
80 |
<h3>⚠️ Important Notice</h3>
|
@@ -84,29 +119,29 @@ async def root():
|
|
84 |
3. Set visibility to Private</p>
|
85 |
</div>
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
<h2>API Documentation</h2>
|
88 |
<ul>
|
89 |
<li><a href="/docs">Interactive Swagger Documentation</a></li>
|
90 |
<li><a href="/redoc">ReDoc Documentation</a></li>
|
91 |
</ul>
|
92 |
|
93 |
-
<h2>
|
94 |
-
<h3>Chat Completion</h3>
|
95 |
-
<p><code>POST /v1/chat/completions</code></p>
|
96 |
-
<p>Parameters:</p>
|
97 |
-
<ul>
|
98 |
-
<li><strong>messages</strong>: List of message objects</li>
|
99 |
-
<li><strong>max_tokens</strong>: Maximum response length (default: 128)</li>
|
100 |
-
<li><strong>temperature</strong>: Sampling temperature (default: 0.7)</li>
|
101 |
-
<li><strong>top_p</strong>: Nucleus sampling threshold (default: 0.9)</li>
|
102 |
-
</ul>
|
103 |
-
|
104 |
-
<h2>Example Request</h2>
|
105 |
<pre>
|
106 |
-
curl -X POST "{os.environ.get('SPACE_HOST', 'http://localhost:7860')}/v1/chat/completions" \\
|
107 |
-H "Content-Type: application/json" \\
|
108 |
-d '{{
|
109 |
"messages": [{{"role": "user", "content": "Explain quantum computing"}}],
|
|
|
110 |
"max_tokens": 150
|
111 |
}}'
|
112 |
</pre>
|
@@ -114,30 +149,26 @@ curl -X POST "{os.environ.get('SPACE_HOST', 'http://localhost:7860')}/v1/chat/co
|
|
114 |
</html>
|
115 |
"""
|
116 |
|
117 |
-
#
|
118 |
-
class ChatCompletionRequest(BaseModel):
|
119 |
-
model: str = "DeepSeek-R1-Distill-Qwen-1.5B"
|
120 |
-
messages: list[dict]
|
121 |
-
max_tokens: int = 128
|
122 |
-
temperature: float = 0.7
|
123 |
-
top_p: float = 0.9
|
124 |
-
stream: bool = False
|
125 |
-
|
126 |
-
# OpenAI-Compatible Response Schema
|
127 |
-
class ChatCompletionResponse(BaseModel):
|
128 |
-
id: str = "chatcmpl-12345"
|
129 |
-
object: str = "chat.completion"
|
130 |
-
created: int = 1693161600
|
131 |
-
model: str = "DeepSeek-R1-Distill-Qwen-1.5B"
|
132 |
-
choices: list[dict]
|
133 |
-
usage: dict
|
134 |
-
|
135 |
@app.post("/v1/chat/completions")
|
136 |
async def chat_completion(request: ChatCompletionRequest):
|
137 |
try:
|
138 |
prompt = "\n".join([f"{msg['role']}: {msg['content']}" for msg in request.messages])
|
139 |
prompt += "\nassistant:"
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
response = llm(
|
142 |
prompt=prompt,
|
143 |
max_tokens=request.max_tokens,
|
@@ -146,8 +177,12 @@ async def chat_completion(request: ChatCompletionRequest):
|
|
146 |
stop=["</s>"]
|
147 |
)
|
148 |
|
149 |
-
return
|
150 |
-
|
|
|
|
|
|
|
|
|
151 |
"index": 0,
|
152 |
"message": {
|
153 |
"role": "assistant",
|
@@ -155,18 +190,32 @@ async def chat_completion(request: ChatCompletionRequest):
|
|
155 |
},
|
156 |
"finish_reason": "stop"
|
157 |
}],
|
158 |
-
usage
|
159 |
"prompt_tokens": len(prompt),
|
160 |
"completion_tokens": len(response['choices'][0]['text']),
|
161 |
"total_tokens": len(prompt) + len(response['choices'][0]['text'])
|
162 |
}
|
163 |
-
|
|
|
164 |
except Exception as e:
|
165 |
raise HTTPException(status_code=500, detail=str(e))
|
166 |
|
167 |
@app.get("/health")
|
168 |
-
def health_check():
|
169 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
if __name__ == "__main__":
|
172 |
-
uvicorn.run(
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import requests
|
3 |
+
import time
|
4 |
from fastapi import FastAPI, HTTPException
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
6 |
+
from fastapi.responses import StreamingResponse, HTMLResponse
|
7 |
from llama_cpp import Llama
|
8 |
from pydantic import BaseModel
|
9 |
import uvicorn
|
10 |
+
from typing import Generator
|
11 |
+
import threading
|
12 |
|
13 |
# Configuration
|
14 |
+
MODEL_URL = "https://huggingface.co/unsloth/DeepSeek-R1-Distill-Qwen-1.5B-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-Q4_K_M.gguf" # Changed to Q4 for faster inference
|
15 |
+
MODEL_NAME = "DeepSeek-R1-Distill-Qwen-1.5B-Q4_K_M.gguf"
|
16 |
MODEL_DIR = "model"
|
17 |
MODEL_PATH = os.path.join(MODEL_DIR, MODEL_NAME)
|
18 |
|
|
|
36 |
# Initialize FastAPI
|
37 |
app = FastAPI(
|
38 |
title="DeepSeek-R1 OpenAI-Compatible API",
|
39 |
+
description="Optimized OpenAI-compatible API with streaming support",
|
40 |
+
version="2.0.0"
|
41 |
)
|
42 |
|
43 |
# CORS Configuration
|
|
|
48 |
allow_headers=["*"],
|
49 |
)
|
50 |
|
51 |
+
# Global model loader with optimized settings
|
52 |
+
print("Loading model with optimized settings...")
|
53 |
try:
|
54 |
llm = Llama(
|
55 |
model_path=MODEL_PATH,
|
56 |
+
n_ctx=1024, # Reduced context window for faster processing
|
57 |
+
n_threads=8, # Increased threads for better CPU utilization
|
58 |
+
n_batch=512, # Larger batch size for improved throughput
|
59 |
n_gpu_layers=0,
|
60 |
+
use_mlock=True, # Prevent swapping to disk
|
61 |
verbose=False
|
62 |
)
|
63 |
+
print("Model loaded with optimized settings!")
|
64 |
except Exception as e:
|
65 |
raise RuntimeError(f"Failed to load model: {str(e)}")
|
66 |
|
67 |
+
# Streaming generator
|
68 |
+
def generate_stream(prompt: str, max_tokens: int, temperature: float, top_p: float) -> Generator[str, None, None]:
|
69 |
+
start_time = time.time()
|
70 |
+
stream = llm.create_completion(
|
71 |
+
prompt=prompt,
|
72 |
+
max_tokens=max_tokens,
|
73 |
+
temperature=temperature,
|
74 |
+
top_p=top_p,
|
75 |
+
stop=["</s>"],
|
76 |
+
stream=True
|
77 |
+
)
|
78 |
+
|
79 |
+
for chunk in stream:
|
80 |
+
delta = chunk['choices'][0]['text']
|
81 |
+
yield f"data: {delta}\n\n"
|
82 |
+
|
83 |
+
# Early stopping if taking too long
|
84 |
+
if time.time() - start_time > 30: # 30s timeout
|
85 |
+
break
|
86 |
+
|
87 |
+
# OpenAI-Compatible Request Schema
|
88 |
+
class ChatCompletionRequest(BaseModel):
|
89 |
+
model: str = "DeepSeek-R1-Distill-Qwen-1.5B"
|
90 |
+
messages: list[dict]
|
91 |
+
max_tokens: int = 256
|
92 |
+
temperature: float = 0.7
|
93 |
+
top_p: float = 0.9
|
94 |
+
stream: bool = False
|
95 |
+
|
96 |
+
# Enhanced root endpoint with performance info
|
97 |
@app.get("/", response_class=HTMLResponse)
|
98 |
async def root():
|
99 |
return f"""
|
100 |
<html>
|
101 |
<head>
|
102 |
+
<title>DeepSeek-R1 Optimized API</title>
|
103 |
<style>
|
104 |
body {{ font-family: Arial, sans-serif; max-width: 800px; margin: 20px auto; padding: 0 20px; }}
|
105 |
.warning {{ color: #dc3545; background: #ffeef0; padding: 15px; border-radius: 5px; }}
|
106 |
+
.info {{ color: #0c5460; background: #d1ecf1; padding: 15px; border-radius: 5px; }}
|
107 |
a {{ color: #007bff; text-decoration: none; }}
|
108 |
code {{ background: #f8f9fa; padding: 2px 4px; border-radius: 4px; }}
|
109 |
</style>
|
110 |
</head>
|
111 |
<body>
|
112 |
+
<h1>DeepSeek-R1 Optimized API</h1>
|
113 |
|
114 |
<div class="warning">
|
115 |
<h3>⚠️ Important Notice</h3>
|
|
|
119 |
3. Set visibility to Private</p>
|
120 |
</div>
|
121 |
|
122 |
+
<div class="info">
|
123 |
+
<h3>⚡ Performance Optimizations</h3>
|
124 |
+
<ul>
|
125 |
+
<li>Quantization: Q4_K_M (optimized speed/quality balance)</li>
|
126 |
+
<li>Batch processing: 512 tokens/chunk</li>
|
127 |
+
<li>Streaming support with 30s timeout</li>
|
128 |
+
<li>8 CPU threads utilization</li>
|
129 |
+
</ul>
|
130 |
+
</div>
|
131 |
+
|
132 |
<h2>API Documentation</h2>
|
133 |
<ul>
|
134 |
<li><a href="/docs">Interactive Swagger Documentation</a></li>
|
135 |
<li><a href="/redoc">ReDoc Documentation</a></li>
|
136 |
</ul>
|
137 |
|
138 |
+
<h2>Example Streaming Request</h2>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
<pre>
|
140 |
+
curl -N -X POST "{os.environ.get('SPACE_HOST', 'http://localhost:7860')}/v1/chat/completions" \\
|
141 |
-H "Content-Type: application/json" \\
|
142 |
-d '{{
|
143 |
"messages": [{{"role": "user", "content": "Explain quantum computing"}}],
|
144 |
+
"stream": true,
|
145 |
"max_tokens": 150
|
146 |
}}'
|
147 |
</pre>
|
|
|
149 |
</html>
|
150 |
"""
|
151 |
|
152 |
+
# Async endpoint handler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
@app.post("/v1/chat/completions")
|
154 |
async def chat_completion(request: ChatCompletionRequest):
|
155 |
try:
|
156 |
prompt = "\n".join([f"{msg['role']}: {msg['content']}" for msg in request.messages])
|
157 |
prompt += "\nassistant:"
|
158 |
|
159 |
+
if request.stream:
|
160 |
+
return StreamingResponse(
|
161 |
+
generate_stream(
|
162 |
+
prompt=prompt,
|
163 |
+
max_tokens=request.max_tokens,
|
164 |
+
temperature=request.temperature,
|
165 |
+
top_p=request.top_p
|
166 |
+
),
|
167 |
+
media_type="text/event-stream"
|
168 |
+
)
|
169 |
+
|
170 |
+
# Non-streaming response
|
171 |
+
start_time = time.time()
|
172 |
response = llm(
|
173 |
prompt=prompt,
|
174 |
max_tokens=request.max_tokens,
|
|
|
177 |
stop=["</s>"]
|
178 |
)
|
179 |
|
180 |
+
return {
|
181 |
+
"id": f"chatcmpl-{int(time.time())}",
|
182 |
+
"object": "chat.completion",
|
183 |
+
"created": int(time.time()),
|
184 |
+
"model": request.model,
|
185 |
+
"choices": [{
|
186 |
"index": 0,
|
187 |
"message": {
|
188 |
"role": "assistant",
|
|
|
190 |
},
|
191 |
"finish_reason": "stop"
|
192 |
}],
|
193 |
+
"usage": {
|
194 |
"prompt_tokens": len(prompt),
|
195 |
"completion_tokens": len(response['choices'][0]['text']),
|
196 |
"total_tokens": len(prompt) + len(response['choices'][0]['text'])
|
197 |
}
|
198 |
+
}
|
199 |
+
|
200 |
except Exception as e:
|
201 |
raise HTTPException(status_code=500, detail=str(e))
|
202 |
|
203 |
@app.get("/health")
|
204 |
+
async def health_check():
|
205 |
+
return {
|
206 |
+
"status": "healthy",
|
207 |
+
"model_loaded": True,
|
208 |
+
"performance_settings": {
|
209 |
+
"n_threads": llm.params.n_threads,
|
210 |
+
"n_ctx": llm.params.n_ctx,
|
211 |
+
"n_batch": llm.params.n_batch
|
212 |
+
}
|
213 |
+
}
|
214 |
|
215 |
if __name__ == "__main__":
|
216 |
+
uvicorn.run(
|
217 |
+
app,
|
218 |
+
host="0.0.0.0",
|
219 |
+
port=7860,
|
220 |
+
timeout_keep_alive=300 # Keep alive for streaming connections
|
221 |
+
)
|