Echo-ai
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,20 +2,21 @@ import os
|
|
2 |
import requests
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
5 |
from llama_cpp import Llama
|
6 |
from pydantic import BaseModel
|
7 |
import uvicorn
|
8 |
|
9 |
-
|
10 |
MODEL_URL = "https://huggingface.co/unsloth/DeepSeek-R1-Distill-Qwen-1.5B-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-Q5_K_M.gguf"
|
11 |
MODEL_NAME = "DeepSeek-R1-Distill-Qwen-1.5B-Q5_K_M.gguf"
|
12 |
MODEL_DIR = "model"
|
13 |
MODEL_PATH = os.path.join(MODEL_DIR, MODEL_NAME)
|
14 |
|
15 |
-
|
16 |
os.makedirs(MODEL_DIR, exist_ok=True)
|
17 |
|
18 |
-
|
19 |
if not os.path.exists(MODEL_PATH):
|
20 |
print(f"Downloading model from {MODEL_URL}...")
|
21 |
response = requests.get(MODEL_URL, stream=True)
|
@@ -29,8 +30,12 @@ if not os.path.exists(MODEL_PATH):
|
|
29 |
else:
|
30 |
print("Model already exists. Skipping download.")
|
31 |
|
32 |
-
|
33 |
-
app = FastAPI(
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# CORS Configuration
|
36 |
app.add_middleware(
|
@@ -40,21 +45,76 @@ app.add_middleware(
|
|
40 |
allow_headers=["*"],
|
41 |
)
|
42 |
|
43 |
-
|
44 |
print("Loading model...")
|
45 |
try:
|
46 |
llm = Llama(
|
47 |
model_path=MODEL_PATH,
|
48 |
-
n_ctx=2048,
|
49 |
-
n_threads=4,
|
50 |
-
n_gpu_layers=0,
|
51 |
verbose=False
|
52 |
)
|
53 |
print("Model loaded successfully!")
|
54 |
except Exception as e:
|
55 |
raise RuntimeError(f"Failed to load model: {str(e)}")
|
56 |
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
class ChatCompletionRequest(BaseModel):
|
59 |
model: str = "DeepSeek-R1-Distill-Qwen-1.5B"
|
60 |
messages: list[dict]
|
@@ -63,7 +123,7 @@ class ChatCompletionRequest(BaseModel):
|
|
63 |
top_p: float = 0.9
|
64 |
stream: bool = False
|
65 |
|
66 |
-
|
67 |
class ChatCompletionResponse(BaseModel):
|
68 |
id: str = "chatcmpl-12345"
|
69 |
object: str = "chat.completion"
|
@@ -72,14 +132,12 @@ class ChatCompletionResponse(BaseModel):
|
|
72 |
choices: list[dict]
|
73 |
usage: dict
|
74 |
|
75 |
-
|
76 |
@app.post("/v1/chat/completions")
|
77 |
async def chat_completion(request: ChatCompletionRequest):
|
78 |
try:
|
79 |
prompt = "\n".join([f"{msg['role']}: {msg['content']}" for msg in request.messages])
|
80 |
prompt += "\nassistant:"
|
81 |
|
82 |
-
|
83 |
response = llm(
|
84 |
prompt=prompt,
|
85 |
max_tokens=request.max_tokens,
|
@@ -88,7 +146,6 @@ async def chat_completion(request: ChatCompletionRequest):
|
|
88 |
stop=["</s>"]
|
89 |
)
|
90 |
|
91 |
-
|
92 |
return ChatCompletionResponse(
|
93 |
choices=[{
|
94 |
"index": 0,
|
@@ -107,11 +164,9 @@ async def chat_completion(request: ChatCompletionRequest):
|
|
107 |
except Exception as e:
|
108 |
raise HTTPException(status_code=500, detail=str(e))
|
109 |
|
110 |
-
|
111 |
@app.get("/health")
|
112 |
def health_check():
|
113 |
return {"status": "healthy"}
|
114 |
|
115 |
-
|
116 |
if __name__ == "__main__":
|
117 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
2 |
import requests
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
from fastapi.middleware.cors import CORSMiddleware
|
5 |
+
from fastapi.responses import HTMLResponse
|
6 |
from llama_cpp import Llama
|
7 |
from pydantic import BaseModel
|
8 |
import uvicorn
|
9 |
|
10 |
+
# Configuration
|
11 |
MODEL_URL = "https://huggingface.co/unsloth/DeepSeek-R1-Distill-Qwen-1.5B-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-Q5_K_M.gguf"
|
12 |
MODEL_NAME = "DeepSeek-R1-Distill-Qwen-1.5B-Q5_K_M.gguf"
|
13 |
MODEL_DIR = "model"
|
14 |
MODEL_PATH = os.path.join(MODEL_DIR, MODEL_NAME)
|
15 |
|
16 |
+
# Create model directory if it doesn't exist
|
17 |
os.makedirs(MODEL_DIR, exist_ok=True)
|
18 |
|
19 |
+
# Download the model if it doesn't exist
|
20 |
if not os.path.exists(MODEL_PATH):
|
21 |
print(f"Downloading model from {MODEL_URL}...")
|
22 |
response = requests.get(MODEL_URL, stream=True)
|
|
|
30 |
else:
|
31 |
print("Model already exists. Skipping download.")
|
32 |
|
33 |
+
# Initialize FastAPI
|
34 |
+
app = FastAPI(
|
35 |
+
title="DeepSeek-R1 OpenAI-Compatible API",
|
36 |
+
description="OpenAI-compatible API for DeepSeek-R1-Distill-Qwen-1.5B",
|
37 |
+
version="1.0.0"
|
38 |
+
)
|
39 |
|
40 |
# CORS Configuration
|
41 |
app.add_middleware(
|
|
|
45 |
allow_headers=["*"],
|
46 |
)
|
47 |
|
48 |
+
# Load the model
|
49 |
print("Loading model...")
|
50 |
try:
|
51 |
llm = Llama(
|
52 |
model_path=MODEL_PATH,
|
53 |
+
n_ctx=2048,
|
54 |
+
n_threads=4,
|
55 |
+
n_gpu_layers=0,
|
56 |
verbose=False
|
57 |
)
|
58 |
print("Model loaded successfully!")
|
59 |
except Exception as e:
|
60 |
raise RuntimeError(f"Failed to load model: {str(e)}")
|
61 |
|
62 |
+
# Root endpoint with documentation
|
63 |
+
@app.get("/", response_class=HTMLResponse)
|
64 |
+
async def root():
|
65 |
+
return f"""
|
66 |
+
<html>
|
67 |
+
<head>
|
68 |
+
<title>DeepSeek-R1 OpenAI API</title>
|
69 |
+
<style>
|
70 |
+
body {{ font-family: Arial, sans-serif; max-width: 800px; margin: 20px auto; padding: 0 20px; }}
|
71 |
+
.warning {{ color: #dc3545; background: #ffeef0; padding: 15px; border-radius: 5px; }}
|
72 |
+
a {{ color: #007bff; text-decoration: none; }}
|
73 |
+
code {{ background: #f8f9fa; padding: 2px 4px; border-radius: 4px; }}
|
74 |
+
</style>
|
75 |
+
</head>
|
76 |
+
<body>
|
77 |
+
<h1>DeepSeek-R1 OpenAI-Compatible API</h1>
|
78 |
+
|
79 |
+
<div class="warning">
|
80 |
+
<h3>⚠️ Important Notice</h3>
|
81 |
+
<p>For private use, please duplicate this space:<br>
|
82 |
+
1. Click your profile picture in the top-right<br>
|
83 |
+
2. Select "Duplicate Space"<br>
|
84 |
+
3. Set visibility to Private</p>
|
85 |
+
</div>
|
86 |
+
|
87 |
+
<h2>API Documentation</h2>
|
88 |
+
<ul>
|
89 |
+
<li><a href="/docs">Interactive Swagger Documentation</a></li>
|
90 |
+
<li><a href="/redoc">ReDoc Documentation</a></li>
|
91 |
+
</ul>
|
92 |
+
|
93 |
+
<h2>API Endpoints</h2>
|
94 |
+
<h3>Chat Completion</h3>
|
95 |
+
<p><code>POST /v1/chat/completions</code></p>
|
96 |
+
<p>Parameters:</p>
|
97 |
+
<ul>
|
98 |
+
<li><strong>messages</strong>: List of message objects</li>
|
99 |
+
<li><strong>max_tokens</strong>: Maximum response length (default: 128)</li>
|
100 |
+
<li><strong>temperature</strong>: Sampling temperature (default: 0.7)</li>
|
101 |
+
<li><strong>top_p</strong>: Nucleus sampling threshold (default: 0.9)</li>
|
102 |
+
</ul>
|
103 |
+
|
104 |
+
<h2>Example Request</h2>
|
105 |
+
<pre>
|
106 |
+
curl -X POST "{os.environ.get('SPACE_HOST', 'http://localhost:7860')}/v1/chat/completions" \\
|
107 |
+
-H "Content-Type: application/json" \\
|
108 |
+
-d '{{
|
109 |
+
"messages": [{{"role": "user", "content": "Explain quantum computing"}}],
|
110 |
+
"max_tokens": 150
|
111 |
+
}}'
|
112 |
+
</pre>
|
113 |
+
</body>
|
114 |
+
</html>
|
115 |
+
"""
|
116 |
+
|
117 |
+
# OpenAI-Compatible Request Schema
|
118 |
class ChatCompletionRequest(BaseModel):
|
119 |
model: str = "DeepSeek-R1-Distill-Qwen-1.5B"
|
120 |
messages: list[dict]
|
|
|
123 |
top_p: float = 0.9
|
124 |
stream: bool = False
|
125 |
|
126 |
+
# OpenAI-Compatible Response Schema
|
127 |
class ChatCompletionResponse(BaseModel):
|
128 |
id: str = "chatcmpl-12345"
|
129 |
object: str = "chat.completion"
|
|
|
132 |
choices: list[dict]
|
133 |
usage: dict
|
134 |
|
|
|
135 |
@app.post("/v1/chat/completions")
|
136 |
async def chat_completion(request: ChatCompletionRequest):
|
137 |
try:
|
138 |
prompt = "\n".join([f"{msg['role']}: {msg['content']}" for msg in request.messages])
|
139 |
prompt += "\nassistant:"
|
140 |
|
|
|
141 |
response = llm(
|
142 |
prompt=prompt,
|
143 |
max_tokens=request.max_tokens,
|
|
|
146 |
stop=["</s>"]
|
147 |
)
|
148 |
|
|
|
149 |
return ChatCompletionResponse(
|
150 |
choices=[{
|
151 |
"index": 0,
|
|
|
164 |
except Exception as e:
|
165 |
raise HTTPException(status_code=500, detail=str(e))
|
166 |
|
|
|
167 |
@app.get("/health")
|
168 |
def health_check():
|
169 |
return {"status": "healthy"}
|
170 |
|
|
|
171 |
if __name__ == "__main__":
|
172 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|