File size: 5,691 Bytes
3ddd5b6
 
 
 
f9e8a03
3ddd5b6
 
 
 
f023e65
f9e8a03
 
3ddd5b6
 
 
f023e65
3ddd5b6
 
f023e65
3ddd5b6
 
 
 
 
 
 
 
 
 
 
 
 
f023e65
 
 
f9e8a03
 
f023e65
3ddd5b6
 
 
 
 
 
 
 
 
f9e8a03
 
3ddd5b6
 
 
f9e8a03
 
f023e65
3ddd5b6
 
f9e8a03
3ddd5b6
 
 
f9e8a03
f023e65
 
 
 
 
f9e8a03
f023e65
 
 
 
 
 
 
 
f9e8a03
f023e65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9e8a03
 
 
 
 
 
 
 
 
 
 
 
f023e65
f9e8a03
f023e65
 
 
 
 
 
 
 
 
 
f9e8a03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ddd5b6
 
 
 
 
 
 
 
 
 
 
 
 
 
f9e8a03
 
3ddd5b6
 
 
 
 
 
 
f9e8a03
3ddd5b6
 
 
 
f9e8a03
3ddd5b6
 
 
 
f9e8a03
 
3ddd5b6
 
f9e8a03
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import requests
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import HTMLResponse
from llama_cpp import Llama
from pydantic import BaseModel
import uvicorn

# Configuration
MODEL_URL = "https://huggingface.co/unsloth/DeepSeek-R1-Distill-Qwen-1.5B-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-Q5_K_M.gguf"
MODEL_NAME = "DeepSeek-R1-Distill-Qwen-1.5B-Q5_K_M.gguf"
MODEL_DIR = "model"
MODEL_PATH = os.path.join(MODEL_DIR, MODEL_NAME)

# Create model directory if it doesn't exist
os.makedirs(MODEL_DIR, exist_ok=True)

# Download the model if it doesn't exist
if not os.path.exists(MODEL_PATH):
    print(f"Downloading model from {MODEL_URL}...")
    response = requests.get(MODEL_URL, stream=True)
    if response.status_code == 200:
        with open(MODEL_PATH, "wb") as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)
        print("Model downloaded successfully!")
    else:
        raise RuntimeError(f"Failed to download model: HTTP {response.status_code}")
else:
    print("Model already exists. Skipping download.")

# Initialize FastAPI
app = FastAPI(
    title="DeepSeek-R1 OpenAI-Compatible API",
    description="OpenAI-compatible API for DeepSeek-R1-Distill-Qwen-1.5B",
    version="1.0.0"
)

# CORS Configuration
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_methods=["*"],
    allow_headers=["*"],
)

# Load the model
print("Loading model...")
try:
    llm = Llama(
        model_path=MODEL_PATH,
        n_ctx=2048,
        n_threads=4,
        n_gpu_layers=0,
        verbose=False
    )
    print("Model loaded successfully!")
except Exception as e:
    raise RuntimeError(f"Failed to load model: {str(e)}")

# Root endpoint with documentation
@app.get("/", response_class=HTMLResponse)
async def root():
    return f"""
    <html>
        <head>
            <title>DeepSeek-R1 OpenAI API</title>
            <style>
                body {{ font-family: Arial, sans-serif; max-width: 800px; margin: 20px auto; padding: 0 20px; }}
                .warning {{ color: #dc3545; background: #ffeef0; padding: 15px; border-radius: 5px; }}
                a {{ color: #007bff; text-decoration: none; }}
                code {{ background: #f8f9fa; padding: 2px 4px; border-radius: 4px; }}
            </style>
        </head>
        <body>
            <h1>DeepSeek-R1 OpenAI-Compatible API</h1>
            
            <div class="warning">
                <h3>⚠️ Important Notice</h3>
                <p>For private use, please duplicate this space:<br>
                1. Click your profile picture in the top-right<br>
                2. Select "Duplicate Space"<br>
                3. Set visibility to Private</p>
            </div>

            <h2>API Documentation</h2>
            <ul>
                <li><a href="/docs">Interactive Swagger Documentation</a></li>
                <li><a href="/redoc">ReDoc Documentation</a></li>
            </ul>

            <h2>API Endpoints</h2>
            <h3>Chat Completion</h3>
            <p><code>POST /v1/chat/completions</code></p>
            <p>Parameters:</p>
            <ul>
                <li><strong>messages</strong>: List of message objects</li>
                <li><strong>max_tokens</strong>: Maximum response length (default: 128)</li>
                <li><strong>temperature</strong>: Sampling temperature (default: 0.7)</li>
                <li><strong>top_p</strong>: Nucleus sampling threshold (default: 0.9)</li>
            </ul>
            
            <h2>Example Request</h2>
            <pre>
curl -X POST "{os.environ.get('SPACE_HOST', 'http://localhost:7860')}/v1/chat/completions" \\
-H "Content-Type: application/json" \\
-d '{{
  "messages": [{{"role": "user", "content": "Explain quantum computing"}}],
  "max_tokens": 150
}}'
            </pre>
        </body>
    </html>
    """

# OpenAI-Compatible Request Schema
class ChatCompletionRequest(BaseModel):
    model: str = "DeepSeek-R1-Distill-Qwen-1.5B"
    messages: list[dict]
    max_tokens: int = 128
    temperature: float = 0.7
    top_p: float = 0.9
    stream: bool = False

# OpenAI-Compatible Response Schema
class ChatCompletionResponse(BaseModel):
    id: str = "chatcmpl-12345"
    object: str = "chat.completion"
    created: int = 1693161600
    model: str = "DeepSeek-R1-Distill-Qwen-1.5B"
    choices: list[dict]
    usage: dict

@app.post("/v1/chat/completions")
async def chat_completion(request: ChatCompletionRequest):
    try:
        prompt = "\n".join([f"{msg['role']}: {msg['content']}" for msg in request.messages])
        prompt += "\nassistant:"

        response = llm(
            prompt=prompt,
            max_tokens=request.max_tokens,
            temperature=request.temperature,
            top_p=request.top_p,
            stop=["</s>"]
        )

        return ChatCompletionResponse(
            choices=[{
                "index": 0,
                "message": {
                    "role": "assistant",
                    "content": response['choices'][0]['text'].strip()
                },
                "finish_reason": "stop"
            }],
            usage={
                "prompt_tokens": len(prompt),
                "completion_tokens": len(response['choices'][0]['text']),
                "total_tokens": len(prompt) + len(response['choices'][0]['text'])
            }
        )
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/health")
def health_check():
    return {"status": "healthy"}

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)