File size: 2,397 Bytes
cf5e9c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os
import joblib
import numpy as np
from concrete.ml.deployment import FHEModelClient, FHEModelServer
import logging

# Configure logging
logging.basicConfig(level=logging.INFO)

# Paths to required files
SCALER_PATH = os.path.join("models", "scaler.pkl")
FHE_FILES_PATH = os.path.join("models", "fhe_files")

# Load the scaler
try:
    scaler = joblib.load(SCALER_PATH)
    logging.info("Scaler loaded successfully.")
except FileNotFoundError:
    logging.error(f"Error: The file scaler.pkl is missing at {SCALER_PATH}.")
    raise

# Initialize the FHE client and server
try:
    client = FHEModelClient(path_dir=FHE_FILES_PATH, key_dir=FHE_FILES_PATH)
    server = FHEModelServer(path_dir=FHE_FILES_PATH)
    server.load()
    logging.info("FHE Client and Server initialized successfully.")
except FileNotFoundError:
    logging.error(f"Error: The FHE files (client.zip, server.zip) are missing in {FHE_FILES_PATH}.")
    raise

# Load evaluation keys
evaluation_keys = client.get_serialized_evaluation_keys()

def predict(input_data):
    """
    Perform a local prediction using the compiled FHE model.

    Args:
        input_data (dict): User input data as a dictionary.

    Returns:
        str: Prediction result ("Fraudulent" or "Non-fraudulent").
    """
    try:
        logging.info(f"Input Data: {input_data}")

        # Scale the input data
        scaled_data = scaler.transform([list(input_data.values())])
        logging.info(f"Scaled Data: {scaled_data}")

        # Encrypt the scaled data
        encrypted_data = client.quantize_encrypt_serialize(scaled_data)
        logging.info("Data encrypted successfully.")

        # Execute the model locally on encrypted data
        encrypted_prediction = server.run(
            encrypted_data, serialized_evaluation_keys=evaluation_keys
        )
        logging.info(f"Encrypted Prediction: {encrypted_prediction}")

        # Decrypt the prediction result
        decrypted_prediction = client.deserialize_decrypt_dequantize(encrypted_prediction)
        logging.info(f"Decrypted Prediction: {decrypted_prediction}")

        # Interpret the prediction
        binary_prediction = int(np.argmax(decrypted_prediction))
        return "Fraudulent" if binary_prediction == 1 else "Non-fraudulent"
    except Exception as e:
        logging.error(f"Error during prediction: {e}")
        return "Error during prediction"