Create predictor.py
Browse files- predictor.py +71 -0
predictor.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import joblib
|
| 3 |
+
import numpy as np
|
| 4 |
+
from concrete.ml.deployment import FHEModelClient, FHEModelServer
|
| 5 |
+
import logging
|
| 6 |
+
|
| 7 |
+
# Configure logging
|
| 8 |
+
logging.basicConfig(level=logging.INFO)
|
| 9 |
+
|
| 10 |
+
# Paths to required files
|
| 11 |
+
SCALER_PATH = os.path.join("models", "scaler.pkl")
|
| 12 |
+
FHE_FILES_PATH = os.path.join("models", "fhe_files")
|
| 13 |
+
|
| 14 |
+
# Load the scaler
|
| 15 |
+
try:
|
| 16 |
+
scaler = joblib.load(SCALER_PATH)
|
| 17 |
+
logging.info("Scaler loaded successfully.")
|
| 18 |
+
except FileNotFoundError:
|
| 19 |
+
logging.error(f"Error: The file scaler.pkl is missing at {SCALER_PATH}.")
|
| 20 |
+
raise
|
| 21 |
+
|
| 22 |
+
# Initialize the FHE client and server
|
| 23 |
+
try:
|
| 24 |
+
client = FHEModelClient(path_dir=FHE_FILES_PATH, key_dir=FHE_FILES_PATH)
|
| 25 |
+
server = FHEModelServer(path_dir=FHE_FILES_PATH)
|
| 26 |
+
server.load()
|
| 27 |
+
logging.info("FHE Client and Server initialized successfully.")
|
| 28 |
+
except FileNotFoundError:
|
| 29 |
+
logging.error(f"Error: The FHE files (client.zip, server.zip) are missing in {FHE_FILES_PATH}.")
|
| 30 |
+
raise
|
| 31 |
+
|
| 32 |
+
# Load evaluation keys
|
| 33 |
+
evaluation_keys = client.get_serialized_evaluation_keys()
|
| 34 |
+
|
| 35 |
+
def predict(input_data):
|
| 36 |
+
"""
|
| 37 |
+
Perform a local prediction using the compiled FHE model.
|
| 38 |
+
|
| 39 |
+
Args:
|
| 40 |
+
input_data (dict): User input data as a dictionary.
|
| 41 |
+
|
| 42 |
+
Returns:
|
| 43 |
+
str: Prediction result ("Fraudulent" or "Non-fraudulent").
|
| 44 |
+
"""
|
| 45 |
+
try:
|
| 46 |
+
logging.info(f"Input Data: {input_data}")
|
| 47 |
+
|
| 48 |
+
# Scale the input data
|
| 49 |
+
scaled_data = scaler.transform([list(input_data.values())])
|
| 50 |
+
logging.info(f"Scaled Data: {scaled_data}")
|
| 51 |
+
|
| 52 |
+
# Encrypt the scaled data
|
| 53 |
+
encrypted_data = client.quantize_encrypt_serialize(scaled_data)
|
| 54 |
+
logging.info("Data encrypted successfully.")
|
| 55 |
+
|
| 56 |
+
# Execute the model locally on encrypted data
|
| 57 |
+
encrypted_prediction = server.run(
|
| 58 |
+
encrypted_data, serialized_evaluation_keys=evaluation_keys
|
| 59 |
+
)
|
| 60 |
+
logging.info(f"Encrypted Prediction: {encrypted_prediction}")
|
| 61 |
+
|
| 62 |
+
# Decrypt the prediction result
|
| 63 |
+
decrypted_prediction = client.deserialize_decrypt_dequantize(encrypted_prediction)
|
| 64 |
+
logging.info(f"Decrypted Prediction: {decrypted_prediction}")
|
| 65 |
+
|
| 66 |
+
# Interpret the prediction
|
| 67 |
+
binary_prediction = int(np.argmax(decrypted_prediction))
|
| 68 |
+
return "Fraudulent" if binary_prediction == 1 else "Non-fraudulent"
|
| 69 |
+
except Exception as e:
|
| 70 |
+
logging.error(f"Error during prediction: {e}")
|
| 71 |
+
return "Error during prediction"
|