Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -29,7 +29,7 @@ def generate_graphs(new_story):
|
|
29 |
new_story_vector = model.encode([new_story])[0]
|
30 |
|
31 |
# Calculate the similarity with all existing stories in the knowledge base
|
32 |
-
knowledge_base_vectors = encoded_df.iloc[:, :-
|
33 |
print(f"New Story Vector Shape: {new_story_vector.shape}")
|
34 |
print(f"Knowledge Base Vector Shape: {knowledge_base_vectors.shape}")
|
35 |
similarities = cosine_similarity([new_story_vector], knowledge_base_vectors)
|
@@ -47,7 +47,7 @@ def generate_graphs(new_story):
|
|
47 |
sns.kdeplot([new_story_vector], shade=False, label="New Story", color='blue')
|
48 |
|
49 |
for i in top_5_indices:
|
50 |
-
most_similar_vector = encoded_df.iloc[i, :-
|
51 |
sns.kdeplot(most_similar_vector, shade=False, label=f"Most Similar Story: {top_5_indices.tolist().index(i)+1}", alpha=0.5)
|
52 |
|
53 |
plt.title("Similarity Distribution of New Story and Top 5 Similar Stories", fontsize=14)
|
|
|
29 |
new_story_vector = model.encode([new_story])[0]
|
30 |
|
31 |
# Calculate the similarity with all existing stories in the knowledge base
|
32 |
+
knowledge_base_vectors = encoded_df.iloc[:, :-7].values # Exclude 'likesCount'
|
33 |
print(f"New Story Vector Shape: {new_story_vector.shape}")
|
34 |
print(f"Knowledge Base Vector Shape: {knowledge_base_vectors.shape}")
|
35 |
similarities = cosine_similarity([new_story_vector], knowledge_base_vectors)
|
|
|
47 |
sns.kdeplot([new_story_vector], shade=False, label="New Story", color='blue')
|
48 |
|
49 |
for i in top_5_indices:
|
50 |
+
most_similar_vector = encoded_df.iloc[i, :-7].values
|
51 |
sns.kdeplot(most_similar_vector, shade=False, label=f"Most Similar Story: {top_5_indices.tolist().index(i)+1}", alpha=0.5)
|
52 |
|
53 |
plt.title("Similarity Distribution of New Story and Top 5 Similar Stories", fontsize=14)
|